شبکه های حسگر زیر آب فرصت طلب
ترجمه نشده

شبکه های حسگر زیر آب فرصت طلب

عنوان فارسی مقاله: بهینه سازی توان برای انتشار پیام در شبکه های حسگر زیر آب فرصت طلب
عنوان انگلیسی مقاله: On the throughput optimization for message dissemination in opportunistic underwater sensor networks
مجله/کنفرانس: شبکه های کامپیوتری – Computer Networks
رشته های تحصیلی مرتبط: مهندسی فناوری اطلاعات، مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: شبکه های کامپیوتری، مهندسی الگوریتم و محاسبات
کلمات کلیدی فارسی: شبکه های حسگر زیر آب فرصت طلب، انتشار پیام، بهینه سازی توان شبکه، تاخیر انتشار
کلمات کلیدی انگلیسی: Opportunistic underwater sensor networks، Message dissemination، Network throughput optimization، Propagation delay
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.comnet.2020.107097
دانشگاه: School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
صفحات مقاله انگلیسی: 16
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4.205 در سال 2019
شاخص H_index: 119 در سال 2020
شاخص SJR: 0.592 در سال 2019
شناسه ISSN: ۱۳۸۹-۱۲۸۶
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14645
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

۱٫ Introduction

۲٫ Related work

۳٫ System model and problem formulation

۴٫ Problem analysis

۵٫ Dissemination algorithm

۶٫ Algorithm analysis

۷٫ Simulation evaluation

۸٫ Conclusions

CRediT authorship contribution statement

Declaration of Competing Interest

Acknowledgments

Appendix A. Expression

Appendix B. The Setting

Supplementary material

Appendix C. Supplementary materials

Research Data

References

بخشی از مقاله (انگلیسی)

Abstract

Opportunistic underwater sensor networks (OUSNs) are deployed for various underwater applications, such as underwater creatures tracking and tactical surveillance. However, the storage capacity of the sensor nodes in such networks may be insufficient, especially when a wealth of data messages are generated rapidly in some emergency response applications. The message dissemination in OUSNs therefore may differ significantly from those in wireless sensor networks or delay-tolerant networks, where network throughput should be taken as one of the primary objectives of network performance. To this end, the strategies for message storing, disseminating and discarding are investigated, and a Message Dissemination Approach for Storage-Limited (MDA-SL) OUSNs is proposed. In MDA-SL, the messages are preferred to be disseminated to the nodes with higher speed or larger residual storage. In addition, the copies of newer messages are inclined to be discarded when their message holders’ storage is full. Simulation results demonstrate the excellent performance of MDA-SL, showing that it can achieve satisfactory network throughput with propagation delay being restricted according to the diverse application requirements.

Introduction

With the broad deployments of mobile sensor nodes, opportunistic mobile sensor networks (OMSNs) [1,2] are introduced to conduct large-scale sensing at a lower cost compared to that of a ubiquitous static infrastructure of sensing devices. Because of the node mobility, however, the available contacts between nodes may be scarce and short, leading to some unstable communication paths. Opportunistic message dissemination techniques enable the network nodes to communicate in an environment where the contemporaneous end-to-end paths are unavailable or unstable, by allowing a data message to be transferred from source to destination in discrete hops even when an end-to-end communication path never emerges. As a derivative form of OMSNs, the opportunistic underwater sensor networks (OUSNs) [3] technology enables various underwater applications, such as underwater creatures tracking [4] and tactical surveillance [5]. However, compared with massive collected data, the storage capacities of nodes are usually insufficient [6,7]. What is worse, the network throughput (which is defined as the total number of data messages received per unit time by the des- ∗ Corresponding author. tinations of all the multi-hop flows in the network) is significantly restricted because the capacity of nodal storage modules is extremely limited (the space memory is even measured in KB [8], e.g., the chip CC2430 has a flash memory of 128 KB [9]).