پیاده سازی و کاربردهای اینترنت اشیا در نظام های مزرعه داری
ترجمه نشده

پیاده سازی و کاربردهای اینترنت اشیا در نظام های مزرعه داری

عنوان فارسی مقاله: اینترنت اشیا در نظام های مزرعه داری: پیاده سازی، کاربردها، چالش ها و پتانسیل
عنوان انگلیسی مقاله: Internet of Things in arable farming: Implementation, applications, challenges and potential
مجله/کنفرانس: مهندسی بیوسیستم - Biosystems Engineering
رشته های تحصیلی مرتبط: کامپیوتر، مهندسی فناوری اطلاعات، فناوری اطلاعات و ارتباطات
گرایش های تحصیلی مرتبط: هوش مصنوعی، اینترنت و شبکه های گسترده، معماری سیستم های کامپیوتری، کاربردهای ICT، مدیریت سیستم های اطلاعاتی
کلمات کلیدی فارسی: کشاورزی هوشمند، اینترنت اشیا، شبکه حسگر بی سیم، اطلاعات مربوط به مدیریت مزرعه، سیستم، داده های بزرگ، یادگیری ماشین
کلمات کلیدی انگلیسی: Smart farming، Internet of things، Wireless sensor network، Farm management information، system، Big data، Machine learning
نوع نگارش مقاله: مقاله مروری (Review Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.biosystemseng.2019.12.013
دانشگاه: Aarhus University, Department of Engineering, Finlandsgade 22, 8200 Aarhus N, Denmark
صفحات مقاله انگلیسی: 25
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3/587 در سال 2019
شاخص H_index: 95 در سال 2020
شاخص SJR: 0/834 در سال 2019
شناسه ISSN: 1537-5110
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14773
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

1- Introduction

2- Review methodology

3- IoT implementation in arable farming

4- Current and potential applications

5- Challenges and solutions

6- Conclusions and future perspectives

References

بخشی از مقاله (انگلیسی)

Introduction

The global population and its food consumption are growing alarmingly quickly, while climate change effects are simultaneously complicating the challenge of ensuring food security in a sustainable manner (Godfray et al., 2010; Tilman, Balzer, Hill, & Befort, 2011). Data-driven agriculture is one of the main strategies and concepts proposed to increase production efficiently while decreasing its environmental impact (Foley et al., 2011). Data-driven technologies in general are quickly advancing with the development of the Internet of Things (IoT), and may become an important part of the future of farming (Brewster, Roussaki, Kalatzis, Doolin, & Ellis, 2017; Jayaraman, Yavari, Georgakopoulos, Morshed, & Zaslavsky, 2016; Verdouw, 2016; Wolfert, Ge, Verdouw, & Bogaardt, 2017). Smart Farming, also called Agriculture 4.0 or digital farming (CEMA, 2017), is developing beyond the modern concept of precision agriculture, which bases its management practices on spatial measurements largely thanks to Global Positioning System (GPS) signals. Smart farming bases its management tasks also on spatial data but is enhanced with context-awareness and is activated by real-time events, improving the performance of hitherto precision agriculture solutions (Sundmaeker, Verdouw, Wolfert, & Perez Freire,  2016; Wolfert et al., 2017). Additionally, Smart Farming usually incorporates intelligent services for applying and managing Information and Communication Technologies (ICT) in farming, and allows transverse integration throughout the whole agri-food chain in regards to food safety and traceability (Sundmaeker et al., 2016). IoT is therefore a key technology in smart farming since it ensures data flow between sensors and other devices, making it possible to add value to the obtained data by automatic processing, analysis and access, and this leads to more timely and cost-effective production and management effort on farms. Simultaneously, IoT enables the reduction of the inherent environmental impact by real-time reaction to alert events such as weed, pest or disease detection, weather or soil monitoring warnings, which allow for a reduction and adequate use of inputs such as agrochemicals or water. IoT eases documentation and supervision of different activities as well as the traceability of products, improving the environmental surveying and control in farms by the appropriate authorities. The IoT concept was introduced by Kevin Ashton in 1999 in relation to linking Radio-Frequency Identification (RFID) for supply chains to the internet (Ashton, 2009), but has no official definition. It implies, however, the connection of a network of “things” to or through the internet without direct human intervention. “Things” can be any object with sensors and/or actuators that is uniquely addressable, interconnected and accessible through the world-wide computer network, i.e. the Internet. The application of IoT in agriculture is advantageous because of the possibility to monitor and control many different parameters in an interoperable, scalable and open context with an increasing use of heterogeneous automated components (Kamilaris, Gao, Prenafeta-Boldu, & Ali, 2016), in addition to the inevitable requirement for traceability. As a result of IoT, agriculture is becoming data-driven, i.e.