چکیده
مقدمه
طراحی سیستم
مدل نظری
نتایج و بحث
پیش بینی مدل ریاضی
نتیجه گیری
منابع
Abstract
Introduction
Design of the system
The theoretical model
Results and discussion
Mathematical model prediction
Conclusion
References
چکیده
یک نیروگاه بخار منحصر به فرد و جدید با استفاده از یک بشقاب خورشیدی متمرکز برای تولید برق ساخته شده است. این سیستم بر اساس توصیه های محققان قبلی در مورد امکان دستیابی به دمای بالا با استفاده از یک دیش خورشیدی ساخته شده است. بخار تولید شده برای راه اندازی یک ایستگاه بخار کوچک، پس از ایجاد برخی تغییرات ساده برای تناسب با مکانیسم کاری جدید، در حالی که اصول کار اصلی نیروگاه های بخار بزرگ را حفظ می کند، استفاده می شود. این با استفاده از عناصر اصلی موجود در یک سیستم چرخه رانکین برای نیروگاه های بخار (توربین، ژنراتور، کندانسور و پمپ) و با افزودن اجزای ثانویه کمکی برای تسهیل حفاظت و عملکرد آن در تمام طول سال به دست آمد. یک ایستگاه کوچک متشکل از یک بشقاب خورشیدی (بخاری خورشیدی)، به عنوان دیگ بخار متصل به یک توربین، که به یک ژنراتور الکتریکی متصل است، کار می کند. مایع کاری خروجی به کندانسور می رود و سپس توسط یک پمپ به بخاری خورشیدی بازیافت می شود. یک نمونه اولیه از بشقاب خورشیدی با قطر 3 متر، سطح دیافراگم به 7.1 متر مربع و فاصله کانونی 1.41 متر ساخته شده است که با آینه های شیشه ای / نقره ای 2 میلی متری پوشانده شده است. داده ها در تابستان و زمستان در محل جمع آوری شد تا عملکرد آن در شرایط مختلف آب و هوایی و تغییرات در میزان تابش خورشیدی، دما و سرعت باد آزمایش شود. نتایج نشان میدهد که ایستگاه قادر به تولید مقادیر خوبی از انرژی، بین 900 تا 2000 وات، با بازده کلی 31 تا 34 درصد بوده است. تجزیه و تحلیل آماری سیستم نیز با استفاده از یک نرم افزار SPSS انجام شد که نتایج آن با دقت بالا، حداکثر مقدار ضریب تعیین (R2)، 85٪ - 91.3٪ انجام شد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
A unique and novel steam power station has been built using a concentrated solar dish, to generate electricity. The system was built based on recommendations by previous researchers about the possibility of obtaining high temperatures using a solar dish. The steam generated will be used to operate a mini steam station, after making some simple changes to fit the new working mechanism, while retaining the main working principles of large steam power stations. This was achieved by using the main elements found in a Rankine cycle system for steam power plant stations (turbine, generator, condenser and pump) and by adding auxiliary secondary components to facilitate its protection and operation all year round. A small station consisting of a solar dish (solar heater), works as a boiler connected to a turbine, this linked to an electric generator. Outlet working fluid travels to the condenser and is then recycled back to the solar heater by a pump. A prototype of the solar dish was built of diameter 3 m, an aperture area reaching 7.1 m2, and focal length 1.41 m, covered with 2 mm glass/ silver mirrors. Data was gathered in situ in summer and winter, to test its performance under different weather conditions and changes in the amount of solar radiation, temperature and wind speed. The results show that the station was able to generate good quantities of energy, ranging from between 900–2000 W, working at 31%–34% overall efficiency. A statistical analysis of the system was also carried out using a SPSS software the results of high accuracy, the maximum value of the coefficient of determination (R2), 85%–91.3%.
Introduction
Concentrating solar power (CSP), is a technology which works to increase the density of solar radiation. The outer surface of a solar dish is covered with curved glass mirrors, which direct solar radiation to a small point called the focus point. When heat energy has been concentrated and transferred to the focus point or absorber, this causes an increase in temperature, the absorber able to reach temperatures in excess of 250 °C. The solar dish, or so-called parabolic collector, is a modern technology that focuses a direct beam of solar radiation onto a single point, similar in action to an antenna that collects radio waves. The shape of the dish, which is parallel to the axis in the direction of the focus, reflects incoming solar radiation, regardless of where it falls on the dish. Almost all the incident solar radiation is therefore reflected. One of the advantages of the solar dish is its high efficiency as it can reach 85% efficiency when used with a tracking system, the temperature generated in the receiver reaching up to 750 °C.
Conclusion
A new system was designed and built to generate electricity using a parabolic concentrated solar dish, modified by the addition of other components, making it similar to a steam power station. The solar dish was built according to the temperatures required and the amount of solar radiation expected to fall on the dish in both summer and winter. The output of power from the new system was good, this heralding the possibility of making a combined steam power station to generate electricity using a concentrated solar dish. The work rate of the system was tested on different days, revealing a range of generated power falling between 900–2000 w, dependent on season. The performance of the proposed model was compared using the correlation coefficient (r). The suitability of the design of the structure of the neural network model was examined through trials, error, preparation and evaluation. The output prediction models of power are presented for December and June, the results showing that the Ann model can estimate power output successfully. The results showed that useful energy from the solar heater have more effect on power output in December, while in June, solar radiation has more of an impact on power output in comparison to other parameters.