چکیده
مقدمه
فناوری های خنک کننده کندانسور
مقایسه فناوری های خنک کننده کندانسور
پیشرفت های اخیر در فناوری های خنک کننده کندانسور
نتیجه گیری
منابع
Abstract
Introduction
Condenser cooling technologies
Comparison of condenser cooling technologies
Recent advances in condenser cooling technologies
Conclusions
References
چکیده
انتخاب فنآوری خنککننده کندانسور میتواند بر قابلیت مالی و فنی نیروگاههای متمرکز انرژی خورشیدی (CSP) تأثیر بگذارد. بنابراین ارزیابی مقایسهای دقیق از سه فناوری خنککننده، یعنی مرطوب، خشک و هیبریدی، برای تسهیل انتخاب فناوری خنککننده بهینه برای کارخانه، مطلوب است. علیرغم راندمان بالای فناوری خنککننده مرطوب، با توجه به این واقعیت که مکانهای بالقوه نیروگاه عموماً در مناطق خشکی هستند که از کمبود آب رنج میبرند، بررسی و در نظر گرفتن سایر گزینههای خنککننده کندانسور صرفهجویی در آب ضروری است. بررسی و مقایسه جنبه های فنی، اقتصادی و زیست محیطی سه فناوری خنک کننده کندانسور برای نیروگاه های CSP ارائه شده است. پذیرش فناوری خشک یا هیبریدی در مقابل فناوری خنککننده مرطوب ممکن است منجر به کاهش عملکرد حرارتی و افزایش نیاز به توان انگلی شود که در نتیجه هزینههای تولید برق بالا میرود. با این حال، همین امر همچنین منجر به کاهش نیاز آب خنککننده تا 92 درصد میشود و در نتیجه پتانسیل تولید انرژی حرارتی خورشیدی را به طور قابلتوجهی افزایش میدهد، زیرا میتوان از سایتهای موجود در مناطق خشک نیز استفاده کرد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Selection of condenser cooling technology can affect the financial as well as technical viability of concentrating solar power (CSP) plants. Detailed comparative assessment of three cooling technologies, i.e., wet, dry, and hybrid, is therefore desirable so as to facilitate selection of optimum cooling technology for the plant. Despite the high efficiency of wet cooling technology, considering the fact that the potential plant locations are generally in arid regions suffering from water scarcity, it is imperative to explore and consider other water conserving condenser cooling options. A review and comparison of technical, economic, and environmental aspects of the three condenser cooling technologies for CSP plants have been presented. Adoption of dry or hybrid technology as against wet cooling technology may lead to reduced thermal performance and increased parasitic power requirement resulting in the high cost of electricity generation. However, the same also results in reduced cooling water requirement up to 92% and thus increase the potential of solar thermal power generation considerably as sites in arid areas can also be utilized.
Introduction
Environmental concerns along with the uncertainty regarding the availability and price of fossil fuels during the last few decades have created signifcant interest in renewable energy-based power generation options (Edenhofer et al., 2015; Frisvold & Marquez, 2013). Solar power generation (both photovoltaic and thermal routes) is being promoted across the globe as an environmentally sustainable renewable energy option (DOE, 2009; Kalogirou, 2004). In solar thermal power generation, the incident solar radiation is frst converted into heat, and the same is then utilized in the power cycle to produce electricity (Timilsina et al., 2012). A schematic of a solar thermal power plant with indirect (two-tank) thermal energy storage is shown in Fig. 1. A solar thermal power plant can be divided into three sub-systems, namely solar energy collection sub-system, thermal energy extraction and storage sub-system, and power generation sub-system (Herrmann et al., 2004; Kuravi et al., 2013; Praveen et al., 2018). The solar energy collection system consists of solar concentrators for concentrating the incident solar radiation onto the receiver. Accordingly, solar thermal power plants are also referred to as concentrating solar power (CSP) plants (Trinh et al., 2014). The concentrators used in a CSP plant can be either line focus or point focus (Behar et al., 2013; Desai & Bandyopadhyay, 2017)
Conclusions
Availability of the required quantity and quality of water may be a formidable challenge in most of the locations with high annual availability of DNI. The reported values of water requirement for condenser cooling in concentrating solar power (CSP) plants is higher than other electricity generation options besides the incremental water requirement for mirror cleaning etc. Alternative water conservative condenser cooling options such as dry or hybrid for CSP plants, especially for arid/desert regions are therefore necessary. The alternative cooling options could have a variety of design, operational, performance and economics related diferences in comparison to the plants with wet cooling. A detailed comparison of three condenser cooling technologies on various attributes is summarised in Table 8. Though the wet cooling technology provides most favourable attributes that are responsible for lower cost of electricity delivered from the plant, the same may not be feasible in arid regions due to inadequate availability of water.