خلاصه
مقدمه
داده های قطع برق و مشخصه سازی
ادغام قطع برق در ابزارهای برنامه ریزی
نیازهای آتی برای داده ها و مدل سازی
منابع
Summary
Introduction
Power outage data and characterization
Integrating power outages in planning tools
Future needs for data and modeling
References
چکیده
کاهش و انطباق با تغییرات اقلیمی مستلزم کربن زدایی الکتریسیته در عین اطمینان از انعطاف پذیری عرضه است، زیرا یک سیاره در حال گرم شدن منجر به افراط بیشتر در آب و هوا و احتمالاً قطع برق خواهد شد. اگرچه به خوبی شناخته شده است که قطعی های طولانی مدت به شدت بر اقتصاد تأثیر می گذارد، چنین خاموشی ها معمولاً در ابزارهای برنامه ریزی زیرساخت شبکه به خوبی مشخص نمی شوند یا مدل سازی نمی شوند. در اینجا، دادهها و تکنیکهای مدلسازی را گرد هم میآوریم و نشان میدهیم که چگونه میتوان از آنها برای توصیف و مدلسازی خاموشیهای طولانی مدت استفاده کرد. ما نشان میدهیم که چگونه میتوان خاموشیها را در ابزارهای برنامهریزی برای یک حالت امیدوارکننده از تامین انرژی انعطافپذیر - ریزشبکهها ادغام کرد. عدم رسیدگی به این افراطها در مدلها میتواند منجر به طرحهای ریزشبکهای شود (1) که ارزش کامل انعطافپذیری خود را درک نمیکنند، زیرا مدلها مزایای محافظت در برابر افراطها را نمیبینند، و (2) که روی کاغذ قابل اعتماد به نظر میرسند، اما عملاً قابل اعتماد نیستند. محافظت در برابر افراط و تفریط اگرچه شرکتهای برق قطع برق را ثبت میکنند، عدم دسترسی به آن دادهها مانع از تحقیقات در مورد انعطافپذیری میشود. در دسترس قرار دادن مجموعه داده ها به صورت عمومی به تلاش ها برای بهبود ابزارهای برنامه ریزی شبکه کمک شایانی می کند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Summary
Mitigating and adapting to climate change requires decarbonizing electricity while ensuring resilience of supply, since a warming planet will lead to greater extremes in weather and, plausibly, in power outages. Although it is well known that long-duration outages severely impact economies, such outages are usually not well characterized or modeled in grid infrastructure planning tools. Here, we bring together data and modeling techniques and show how they can be used to characterize and model long-duration outages. We illustrate how to integrate outages in planning tools for one promising mode of resilient energy supply—microgrids. Failing to treat these extremes in models can lead to microgrid designs (1) that do not realize their full value of resilience, since models do not see the benefits of protecting against extremes, and (2) that appear reliable on paper yet do not actually protect against extremes. Although utilities record power interruptions, lack of access to that data is hindering research on resilience; making datasets available publicly would substantially aid efforts to improve grid planning tools.
Introduction
The electric power system is on the cusp of two revolutions. The first is decarbonization—the transition to carbon-free supplies of electricity (National Academy of Sciences, 2021a). At the same time, these new carbon-free energy resources are downsizing and increasingly being deployed as decentralized supplies at the “grid edge” (National Academy of Sciences, 2021b). The transition to decarbonized, decentralized electricity is creating enormous opportunities for customer-sited energy resources like solar photovoltaics, batteries and electric vehicles (Hanna and Victor, 2021). It is also creating opportunities for new grid architectures, like microgrids, that can keep energy from these sources reliable (Gholami et al., 2016) (National Academy of Sciences, 2017). The opportunities are substantial: since 2014 US microgrid deployments have increased year over year, boosted by government support following Superstorm Sandy. The year 2019 alone saw nearly 550 new installations, a record high (Wood Mackenzie, 2021a, Wood Mackenzie, 2021b). With technology costs falling rapidly (Way et al., 2021), capital markets, too, are backing the project: since 2018 US private equity firms have committed over $1 billion for new microgrids, including a $500 million investment in 2021, the largest ever (Greentech Media, 2021) (UtilityDive, 2021).
Future needs for data and modeling
Extremes are important to examine because they are known to severely impact society and human welfare (Taleb, 2010). In different ways, they pose challenges for grid regulators responsible for maintaining resource adequacy as well as for individual customers and firms seeking higher levels of electric reliability than those provided by local utility service. Yet long-duration outages are usually not well characterized in the tools used to plan resilient grid infrastructure.
We have discussed how certain barriers, like lack of access to comprehensive power outage datasets and ill-suited tools, make it difficult to analyze complex interactions between long-duration outages and resilience. Approaches for characterizing outages are possible, for example, by using annual average reliability indices reported by utilities while making assumptions about the wider spread of interruptions. Fundamentally, however, improving estimates of the economics and resilience of grid investments will require wider access to the granular interruption data that underlie rare events and fat tails.