چکیده
مقدمه
در مورد مدیریت و کنترل عملیات ریزشبکه
جریان برق ریزشبکه
فرمول مدیریت انرژی مبتنی بر EOPF
سیستم محک CIGRE اصلاح شده
ارزیابی مدیریت انرژی مبتنی بر EOPF
نتیجه گیری
منابع
Abstract
Introduction
On the microgrid operation management and control
Microgrid power-flow
EOPF based energy management formulation
Modified CIGRE benchmark system
EOPF-based energy management assessment
Conclusion
References
چکیده
این مقاله یک رویکرد جدید از به کارگیری کنترل سلسله مراتبی برای بهینهسازی عملکرد ریزشبکههای AC جزیرهای را ارائه میکند. روش پیشنهادی یک طرح مدیریت انرژی آفلاین، متمرکز و مبتنی بر جریان قدرت است که شامل دینامیک کنترل اولیه و ثانویه در یک فرمول جریان قدرت اصلاح شده است. سطح جریان توان داخلی ولتاژ باس و فرکانس سیستم را در محدوده مورد نظر حفظ می کند و تعادل توان را در شبکه تضمین می کند. سطح بهینه سازی بیرونی تضمین می کند که اجزای مختلف در محدودیت های عملیاتی خود باقی می مانند، در حالی که یک هدف در سطح سیستم را بهینه می کنند. دو مطالعه موردی با استفاده از یک ریزشبکه معیار CIGRE ولتاژ متوسط 14 شینه (MV) اصلاح شده برای اعتبارسنجی الگوریتم مدیریت انرژی پیشنهادی مورد بررسی قرار گرفتهاند. مورد اول شامل به حداقل رساندن هزینه عملیاتی ژنراتور معمولی و کاهش انرژی تجدیدپذیر، هر دو با بارهای خطی و غیر خطی، و مورد دوم شامل به حداقل رساندن هزینه عملیاتی ژنراتور معمولی با کاهش بار است. نتایج بهدستآمده از مطالعات موردی، کارایی الگوریتم مدیریت انرژی پیشنهادی را نشان میدهد و قابلیت اطمینان آن را برای عملکرد بهینه ریزشبکههای AC جزیرهای با منابع انرژی تجدیدپذیر متعدد نشان میدهد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
This paper presents a novel approach of employing hierarchical control to optimize the operation of islanded AC microgrids. The proposed method is an offline, centralized, power-flow-based energy management scheme which includes primary and secondary control dynamics in a modified power-flow formulation. The inner power-flow level maintains bus voltages and system frequency within the desired range and ensures power balance in the network. The outer optimization level ensures that the various components remain within their operational constraints, while optimizing a system-level objective. Two case studies are explored using a modified 14-bus medium voltage (MV) CIGRE benchmark microgrid to validate the proposed energy management algorithm. The first case includes minimization of conventional generator operating cost and renewable energy curtailment, both with linear and non-linear loads, and the second case includes minimization of conventional generator operating cost with load shedding. The results obtained from the case studies show the efficiency of the proposed energy management algorithm, and evidence its reliability for the optimal operation of islanded AC microgrids with multiple renewable energy sources.
Introduction
The extensive promotion of green energy and decarbonization, through the various environmental policies and initiatives, have driven research towards innovative solutions. In this regard, renewable energy sources (RES) and complementary technologies have received wide global attention. This has propelled a rise in decentralizing the power system through deploying distributed energy resources (DERs). Microgrids have emerged as an promising means of interconnecting DERs to the distribution grid [1]. Microgrids are formed by the accumulation of distributed generation (DG) units, energy storage systems (ESS) and loads that operate in conjunction with each other to ensure reliable power supply to the microgrid network [2]. Additionally, they can operate in grid-connected mode by being connected to the distribution grid through a point of common coupling (PCC), or independently of the distribution grid in islanded mode. Fig. 1 displays a schematic representation of a microgrid with conventional generators (CGs), RES such as wind turbines (WTs) and solar photovoltaic (SPV) panels, ESS, loads and the main utility grid, along with a centralized energy management system (EMS).
Conclusion
This paper proposes a novel EOPF-based hierarchical scheme for islanded AC microgrids. The proposed centralized offline energy management scheme uses the HCPQ bus formulation which takes into account the effect of primary and secondary control dynamics. The energy management algorithm is validated on a modified MV CIGRE benchmark network by performing two different case studies. The simulation results from the case studies indicate a good performance for the proposed energy management algorithm. The optimization objective of minimizing cost was achieved, along with maintaining bus voltages and system frequency within the desired range, securing power balance, and ensuring that the various components are within their operational limits. Additionally, shorter droop time frames and voltage soft limits allow for more flexibility in the system by ensuring reliable operation. In order to judge whether the chosen droop coefficient ranges would ensure a stable system operation, a stability analysis would be required, which was out of the scope in this study. Future works may include extending the control scheme for multi-microgrid system energy management.