چکیده
1. مقدمه
2. مدل سلول فتوولتائیک و پارامترهای طراحی
3. توزیع فازی پارامترهای سلول فتوولتائیک
4. تجزیه و تحلیل حساسیت جهانی پارامترهای سلول فتوولتائیک
5. تجزیه و تحلیل و بحث
6. نتیجه گیری
منابع
Abstract
1. Introduction
2. PV cell model and design parameters
3. Fuzzy Distribution of PV cell parameters
4. Global sensitivity analysis of PV cell parameters
5. Analysis and discussion
6. Conclusion
CRediT authorship contribution statement
Declaration of competing interest
Acknowledgments
References
چکیده
سلول های فتوولتائیک می توانند مستقیماً انرژی خورشیدی را به انرژی الکتریکی تبدیل کنند که سازگار با محیط زیست است و کاربردهای گسترده ای دارد. در مهندسی عملی، عدم قطعیت پارامترهای سلول فتوولتائیک تأثیر مهمی بر عملکرد سلول دارد. به منظور مطالعه تأثیر عدم قطعیت پارامتر بر عملکرد خروجی سلولهای فتوولتائیک، یک مدل سلول فتوولتائیک ایجاد میشود و پنج پارامتر انتخاب میشوند: شدت تابش، دمای سطح سلول فتوولتائیک، ضریب دما، مقاومت سری معادل و مقاومت موازی معادل. تأثیر این پارامترها بر توان خروجی و راندمان تبدیل سلولهای فتوولتائیک با استفاده از روش تحلیل حساسیت جهانی مبتنی بر تئوری فازی مورد مطالعه قرار گرفته است. شاخصهای اصلی و کل حساسیت جهانی که تأثیر هر پارامتر بر عملکرد خروجی را توصیف میکنند، محاسبه و رتبهبندی شدند. پارامترهای کلیدی مؤثر بر عملکرد سلولهای فتوولتائیک به دمای سطح سلول و مقاومت موازی معادل مرتبط تعیین شد. در تولید و عمر واقعی، عملکرد خروجی سلول های فتوولتائیک را می توان با کنترل این دو عامل بهبود بخشید. نتایج این مطالعه میتواند به هدایت تحلیل عملکرد و بهینهسازی پارامتر سلولهای فتوولتائیک، تسریع توسعه و بهبود پذیرش سیستمهای فتوولتائیک کمک کند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Photovoltaic cells can directly convert solar energy into electrical energy, which is environmentally friendly and has a wide range of applications. In practical engineering, the uncertainty of photovoltaic cell parameters has an important impact on cell performance. In order to study the influence of parameter uncertainty on the output performance of photovoltaic cells, a photovoltaic cell model is established and five parameters are selected: irradiation intensity, photovoltaic cell surface temperature, temperature coefficient, equivalent series resistance and equivalent parallel resistance. The influence of these parameters on the output power and conversion efficiency of photovoltaic cells is studied by using the global sensitivity analysis method based on fuzzy theory. The principal and total global sensitivity indexes describing the influence of each parameter on the output performance were therefore calculated and ranked. The key parameters influencing the performance of photovoltaic cells were determined to be related to cell surface temperature and equivalent parallel resistance. In actual production and life, the output performance of photovoltaic cells can be improved by controlling these two factors. The results of this study can help to guide the performance analysis and parameter optimization of photovoltaic cells, accelerating the development and improving the adoption of photovoltaic systems.
Introduction
With the aggravation of the global energy crisis and increasing environmental pollution, the development of solar energy occupies a critical position in the energy structure (Wang et al., 2021b, Xiong et al., 2022). As photovoltaic (PV) cells directly convert solar energy into electric energy, they represent an increasingly popular source of renewable energy. The number of deployed PV power generation systems has significantly increased worldwide (Wang et al., 2021a, Wu et al., 2022), and many countries have introduced grid pricing policies to accelerate investment in PV power generation. Therefore, research into the performance of PV cells is of great significance for ensuring their continued adoption (Sharma et al., 2021, Sadan and Dwivedi, 2020). To date, many experts and scholars have studied the parameters of PV cells (Chehreh Ghadikolaei, 2021, Chen et al., 2020, Chandran et al., 2021, Ganesh Pardhu and Kota, 2021, Ji et al., 2021). For example, Chen et al. (2020) used variables reduction and improved shark optimization technique to extract photovoltaic cells parameters, Chandran et al. (2021) proposed an improved distribution estimation algorithm to estimate the optimal parameters of fuel cells and solar cells, and Ganesh Pardhu and Kota (2021) proposed a new random radial shift optimization algorithm based on a group algorithm to extract the unknown parameters of solar PV cells. The confirmation and extraction of parameters of photovoltaic cells and their components is of great significance for evaluating the performance of photovoltaic cell systems and preventing aging and failure of systems and components.
Conclusion
To address the instability of PV cell output performance according to the inherent fluctuation of design parameters, this study applied the global sensitivity index based on fuzzy theory to measure the influence of inherent design parameter fluctuation on the stability of PV cell output power and conversion efficiency . The Monte Carlo method was used to calculate the principal and global sensitivity indexes of the design variables based on the credibility variance. The results show that compared with the cell surface temperature and equivalent parallel resistance , the total global sensitivity index values of the short-circuit current temperature coefficient , irradiation intensity , and equivalent series resistance are minimal for both the output power and conversion efficiency , and the effects of their variation can therefore be ignored. Therefore, the key design parameters of PV cells are related to the working environment () and material (). In actual production and application, the output performance of PV cells can therefore be improved by controlling material selection(ensure a consistent equivalent parallel resistance ) and expected working environment temperature . The results of this study can provide guidance for the design and optimization of future PV cells, and further improve their application and utility to increase adoption.