چکیده
1. مقدمه
2. روش شناسی برای طراحی لرزه ای توربین های بادی نزدیک ساحل و دور از ساحل
3. اعتبارسنجی با استفاده از مزرعه بادی Kamisu
4. بحث و نتیجه گیری
منابع
Abstract
1. Introduction
2. Methodology for the seismic design of nearshore and offshore wind turbines
3. Validation using Kamisu wind farm
4. Discussion and conclusions
Author statement
Funding
Declaration of competing interest
Acknowledgment
References
چکیده
تعداد فزاینده ای از مزارع بادی فراساحلی در مناطق لرزه خیز بر روی خاک های حساس به روانگرایی در حال ساخت هستند. این مقاله روشی را برای تجزیه و تحلیل و طراحی تکشمعها در خاکهای لرزهای روانپذیر با گسترش «روش 10 مرحلهای» با 7 مرحله دیگر ارائه میکند. این مراحل اضافی شامل جذب دادههای لرزهای، تجزیه و تحلیل پاسخ سایت، بررسی پایداری سازه (بررسی ULS از طریق مفهوم نسبت بار-استفاده)، انتخاب حرکت ورودی، پیشبینی شیب/چرخش دائمی، و نشست زمین پس از روانگرایی است. یک نمودار جریان، که وابستگی متقابل رشته های مختلف را نشان می دهد، ارائه شده است و می تواند به طراحی معمولی تعمیم یابد. این روش پیشنهادی با استفاده از عملکرد مشاهدهشده یک توربین دریایی و نزدیک ساحل از مزرعه بادی کامیسو در طول زلزله بزرگ ژاپن شرقی در سال 2011 تأیید میشود. نتایج پیشبینیشده بر اساس روش پیشنهادی به خوبی با مشاهدات میدانی مقایسه میشود و (i) عملکرد کلی خوب توربینهای دریایی و (ب) حد تجاوز وضعیت توربین نزدیک ساحل را مشخص میکند. پیشبینی میشود که روش پیشنهادی برای طراحی توربینهای بادی تکپایهدار در مناطق لرزهخیز مفید باشد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
An increasing number of offshore wind farms are being constructed in seismic regions over liquefaction susceptible soils. This paper presents a methodology for the analysis and design of monopiles in seismically liquefiable soils by extending the established "10-step methodology" with an additional 7 steps. These additional steps include assimilation of seismic data, site response analysis, stability check of the structure (ULS check through the concept of load-utilization ratio), input motion selection, prediction of permanent tilt/rotation, and ground settlement post liquefaction. A flow chart, which shows the interdependence of the different disciplines, is presented and can be extended to routine design. This proposed method is validated using the observed performance of an offshore and nearshore turbine from the Kamisu wind farm during the 2011 Great East Japan earthquake. Predicted results based on the proposed methodology compare well with the field observation and demarcate the (i) good overall performance of the offshore turbines and (ii) limit state exceedance of the nearshore turbine. It is envisaged that the proposed method will be useful towards the design of monopiles-supported wind turbines in seismic areas.
Introduction
Towards the end of 2020, the global wind energy generation capacity amounted to 733 GW, with new installations accounting for 111 GW, almost doubling that of 2019 [1]. Due to higher efficiencies and more stable wind conditions offshore than onshore sites, an increasing proportion of wind power is produced through large offshore wind farms. This demand for cost-efficient wind energy production has facilitated the industry to develop larger turbines with higher capacities. Fig. 1 presents the evolution of turbine capacity over the last 16 years, color-coded with rotor diameter. However, due to the high capital investments involved, profitability of these wind farms requires continuous operation and immediate functionality post-natural hazards. Therefore, the seismic resilience of OWTs is an important consideration in their engineering design and is, therefore, an area of active research. Readers are referred to recent publications [[2], [3], [4], [5], [6], [7], [8], [9]] on various aspects of seismic design.
Discussion and conclusions
An existing framework for the foundation design of monopile-supported wind turbines was extended to include seismic load considerations in liquefiable and non-liquefiable soil. The framework was validated using a case study from Wind Power Kamisu, a near-shore farm that performed well during the 2011 Tohoku earthquake and subsequent tsunami.
The discussion and conclusions are presented succinctly below:
1. A quantitative appraisal of appropriate damping, as recommended by Lombardi and Bhattacharya [58] and Adhikari and Bhattacharya [57], could vary the structural demands and therefore needs proper consideration. Back analysis of a case study from the Kamisu wind farm further indicated that structural demands could vary if suitable damping models are not selected.
2. Definition of mechanism-specific p-y spring models for liquefiable and non-liquefiable soil is necessary as their selection could underpredict or overpredict structural response (deformation, tilt, RNA acceleration). As near-level ground conditions prevailed in this study, the authors employed hyperelastic (strain hardening) p-y curves for liquefiable soil to account for the increased resistance attributed to shear strain-induced soil dilation. During shear strain excursions, such dilative tendencies can transfer high acceleration pulses to the RNA and therefore need to be accounted for in the design stage.