دانلود مقاله تشخیص گفتار هوشمند لکنت
ترجمه نشده

دانلود مقاله تشخیص گفتار هوشمند لکنت

عنوان فارسی مقاله: تشخیص گفتار هوشمند لکنت: مروری مختصر
عنوان انگلیسی مقاله: Intelligent stuttering speech recognition: A succinct review
مجله/کنفرانس: ابزارها و برنامه های چند رسانه ای - Multimedia Tools and Applications
رشته های تحصیلی مرتبط: پزشکی - مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: روانپزشکی - هوش مصنوعی - مهندسی نرم افزار
کلمات کلیدی فارسی: لکنت - تشخیص گفتار - استخراج ویژگی - یادگیری ماشینی - یادگیری عمیق - طبقه بندی
کلمات کلیدی انگلیسی: Stuttering - Speech recognition - Feature extraction - Machine learning - Deep learning - Classification
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1007/s11042-022-12817-z
نویسندگان: Nilanjan Banerjee - Samarjeet Borah - Nilambar Sethi
دانشگاه: Department of Computer Science and Engineering, GIET University, India
صفحات مقاله انگلیسی: 22
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 3.158 در سال 2020
شاخص H_index: 80 در سال 2022
شاخص SJR: 0.716 در سال 2020
شناسه ISSN: 1573-7721
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e16843
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (ترجمه)

خلاصه

1. مقدمه

2 روش های استخراج ویژگی

3 تشخیص گفتار لکنت: یادگیری ماشین سنتی و رویکردهای مبتنی بر یادگیری عمیق

4 بحث و تحلیل

5 نتیجه گیری و کار آینده

اعلامیه ها

منابع

فهرست مطالب (انگلیسی)

Abstract

1 Introduction

2 Methods of feature extraction

3 Stuttered speech recognition: Traditional Machine Learning & Deep Learning based approaches

4 Discussion and analysis

5 Conclusion and future work

Declarations

References

بخشی از مقاله (ترجمه ماشینی)

چکیده

     تشخیص گفتار لکنت یک مفهوم کاملاً مطالعه شده در پردازش سیگنال گفتار است. طبقه بندی اختلال گفتار محور اصلی این مطالعه است. طبقه بندی گفتار دارای لکنت با افزایش یادگیری ماشینی و یادگیری عمیق اهمیت بیشتری پیدا می کند. در این مطالعه، برخی از جدیدترین و تاثیرگذارترین روش‌های تشخیص گفتار لکنت با بحث در مورد دسته‌های مختلف لکنت بررسی می‌شوند. فرآیند تشخیص گفتار لکنت عمدتاً به چهار بخش تقسیم می‌شود: پیش تاکید گفتار ورودی، تقسیم‌بندی، استخراج ویژگی و طبقه‌بندی لکنت. همه این بخش ها به اختصار توضیح داده شده و تحقیقات مرتبط مورد بحث قرار می گیرد. مشاهده می‌شود که روش‌های مختلف یادگیری ماشین سنتی و طبقه‌بندی یادگیری عمیق برای تشخیص گفتار لکنت‌دار در چند دهه اخیر به کار گرفته شده‌اند. یک تحلیل جامع بر روی روش‌های استخراج و طبقه‌بندی ویژگی‌های مختلف با کارایی آنها ارائه شده است.

توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.

بخشی از مقاله (انگلیسی)

Abstract

     Stuttering speech recognition is a well-studied concept in speech signal processing. Classification of speech disorder is the main focus of this study. Classification of stuttered speech is becoming more important with the enhancement of machine learning and deep learning. In this study, some of the recent and most influencing stuttering speech recognition methods are reviewed with a discussion on different categories of stuttering. The stuttering speech recognition process is divided mainly into four segments-input speech pre-emphasis, segmentation, feature extraction, and stutter classification. All these segments are briefly elaborated and related researches are discussed. It is observed that different traditional machine learning and deep learning classification approaches are employed to recognize stuttered speech in last few decades. A comprehensive analysis is presented on different feature extraction and classification method with their efficiency.

Introduction

     Human speech is employed for communication to precise their feelings, ideas, and thoughts. A sort of speech problem where the flow of speech is interrupted is understood as stuttering or generally heard as stammering. It is a speech disorder where the sufferers want to say but have difficulty saying it. Stutterers feel same of difficulty while communicating with other people, which often affect a person’s quality of life and interpersonal relationships. It creates negative vibes influencing job performance and opportunities. A huge number of people i.e., more than 70 million people worldwide are affected by this problem. This number is about 1% of the total population [41]. It is observed whenever they communicate, receiver person feels irritated by hearing the prolonged words and most of the time don’t understand. E. Charles Healey, in his article, sought a discussion of children reaction to stuttering, impacts of stuttering with listener recall and comprehension of story information listeners’, interferes stuttering on listeners’ reactions and listeners’ reaction on strategies and therapy programs on stuttering [21]. An enormous source of evidence-based information about the cited things has been provided in the extant literature. Stuttering, aging processes and several neurological diseases in relation to speech can be identified by muscular stiffness and analyzing the latency times in verbal reactions, their coordination and their patterns of the muscles (respiratory, glottal, oromandibular) involved in speaking [50]. Being an interdisciplinary field of research among different domains like speech pathology, psychology, speech physiology, acoustics and signal analysis, the field of stuttering speech recognition is one area of interest for the researches over previous few decades. Traditionally, the assessment of stuttering is done by manually counting and classifying the occurrence of disturbances in stuttering speech. Time of disfluency in total speech is also considered as a measurement to assess stuttered speech. But this type of manually stuttering assessment varies depending on different speech language pathologist (SLP). So, it is time consuming and liable to error.

Conclusion and future work

     Speech is the communication carrier to express human thoughts, feelings and ideas. Stuttering, or stammering is a disorder of speech which affects millions of people in the glove. In the field of stuttered speech recognition, different machine learning models were applied for analysis and classification over the last few decades. In this study, different machine learning and deep learning models with their application in stuttered speech recognition are discussed. The 3 major classifiers i.e., ANNs, HMMs and SVM have been used to classify different types of stutterers. Deep learning algorithms have become very popular nowadays over traditional machine learning algorithms for stuttering speech recognition, discussed briefly in this study. The major challenges like small volume unlabeled data, similarity between different stuttering classes are observed. Moreover, an input speech file sometimes contains more than one types of stuttering which creates difficulties on labeling. Most of the research had been concentrated on prolongation and repetition types of stuttering. Some work on Interjection types of stuttering was also done but work on classification of broken words, revisions, incomplete phrases types of stuttering is almost nil. Most of the researchers labeled different no of stuttered speech from UClASS database manually in order to train their model. Different features like LPC, LPCC, PLP and MFCC were used in the previous researches to train and test the models among them MFCC features was extensively used. Reviews and comparisons of earlier researches have been highlighted in this paper. Accuracy in respect to recognition and correction of stuttering speech may be improved by employment of modified feature extraction algorithm and different deep learning based algorithms on large database.