دانلود مقاله آنالیز دینامیک غیرخطی ساختار خرپایی باریک انعطاف‌پذیر
ترجمه نشده

دانلود مقاله آنالیز دینامیک غیرخطی ساختار خرپایی باریک انعطاف‌پذیر

عنوان فارسی مقاله: آنالیز دینامیک غیرخطی یک ساختار خرپایی باریک انعطاف‌پذیر بزرگ که یک دستکاری برای مونتاژ در مدار حمل می‌کند
عنوان انگلیسی مقاله: Nonlinear Dynamics Analysis of a Large Flexible Slender Truss-Structure Carrying a Manipulator for On-Orbit Assembly
مجله/کنفرانس: دسترسی آی تریپل ای - IEEE Access
رشته های تحصیلی مرتبط: مهندسی عمران
گرایش های تحصیلی مرتبط: سازه
کلمات کلیدی فارسی: مونتاژ در مدار - منیولاتور خرپایی باریک انعطاف پذیر - برانگیختگی پارامتری - روش مقیاس های چندگانه - رزونانس اولیه - رزونانس زیر هارمونیک
کلمات کلیدی انگلیسی: On-orbit assembly - flexible slender truss-structure mounted manipulator - parametric excitation - method of multiple scales - primary resonance - sub-harmonic resonance
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1109/ACCESS.2022.3176750
لینک سایت مرجع: https://ieeexplore.ieee.org/document/9779259
نویسندگان: Xiaobin Tang - Jian Zhang - Weibo Xie - Zhijiang Xie
دانشگاه: State Key Laboratory of Mechanical Transmission, Chongqing University, China
صفحات مقاله انگلیسی: 16
ناشر: آی تریپل ای - IEEE
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 4.342 در سال 2020
شاخص H_index: 158 در سال 2022
شاخص SJR: 0.927 در سال 2020
شناسه ISSN: 2169-3536
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e17113
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: IEEE Citation
فهرست مطالب (ترجمه)

خلاصه

مقدمه

II معادلات دینامیک

III روش حل

IV نتایج و بحث های عددی

نتیجه گیری

پیوست اول

منابع

فهرست مطالب (انگلیسی)

Abstract

I Introduction

II Equations of Dynamics

III Solution Procedure

IV Numerical Results and Discussions

V Conclusion

Appendix A

References

بخشی از مقاله (ترجمه ماشینی)

چکیده

     دینامیک غیرخطی یک دستکاری ساز باریک منعطف نصب شده بر روی خرپا برای مونتاژ در مدار، که می تواند به عنوان یک سیستم برهمکنش پیوند پرتو-دوار ساده شود، از نظر تئوری بررسی شده است. معادلات دیفرانسیل جزئی حاکم (PDEs) تیر با ضرایب متغیر زمانی با استفاده از اصل D'Alembert با روش تعادل لحظه ای که در آن تیر از نوع اویلر-برنولی است و تأثیر شیب در نظر گرفته شده است، ایجاد می شود. چنین سیستمی یک سیستم برانگیخته پارامتریک معمولی است. از روش مقیاس های چندگانه برای تعیین محلول تقریبی استفاده می شود و شرایط تشدید اولیه (ω1≈ωref) و رزونانس زیر هارمونیک (ω1≈2ωref، ω1≈3ωref و ω1≈4ωref) به دست می آید. علاوه بر این، پاسخ غیرخطی، پایداری و دوشاخه‌ها برای شرایط تشدید اولیه و زیر هارمونیک نیز با پارامترهای مختلف سیستم بررسی شده‌اند. علاوه بر این، نتایج برخی شرایط خاص توسط آنالیز اغتشاش با حل عددی مقایسه شده و مطابقت خوبی دارند. این کار دارای اهمیت هدایت کننده خاصی برای کار مونتاژ خودکار در مدار است و این روش را می توان به حالت کلی تر سه بعدی گسترش داد.

توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.

بخشی از مقاله (انگلیسی)

Abstract

     Nonlinear dynamic of a flexible slender truss-structure mounted manipulator for on-orbit assembly, which can be simplified as a beam–rotating link interaction system, is theoretically investigated. The governing partial differential equations (PDEs) of beam with time-varying coefficients is established by using the D’Alembert principle incorporated with the moment balance method where the beam is of a Euler–Bernoulli type and the influence of slope is considered. Such system is a typical parametrically excited system. The multiple scales method is used to determine the approximate solution and the conditions of the primary resonance ( ω1≈ωref ) and sub-harmonic resonance ( ω1≈ 2ωref , ω1≈ 3ωref and ω1≈ 4ωref ) are obtained. In addition, the nonlinear response, stability and bifurcations for primary and sub-harmonic resonance conditions have also been investigated by varying system parameters. Moreover, the results of some specific conditions by the perturbation analysis are compared with the numerical solution and are found to be in good agreement. This work has certain guiding significance for autonomous on-orbit assembly task and the method can be extended to the more general three-dimensional case.

Introduction

     Future space exploration puts forward some new requirements of space structure, such as establishment of large space solar power plants to cope with energy depletion which is huge volume (from thousands of meters or even dozens of kilometers). To meet the requirements of such space missions, the space structures will be constructed too large to be launched and deployed as a whole [1]–[5]. It is identified as one of the most appealing solutions in which the manipulator is mounted on the long truss-structures to assemble or maintain the several adjacent blocks [6]. One problem of great concern is that of low-frequency structure may be easily excited by high-frequency robotic and hardly damped out in space environment due to the low-damping characteristics of the flexible structures [2], [7]. The vibration may cause inaccuracy of manipulator positioning, and more seriously, the premature fatigue failure of flexible structure [8] and it could be reduced by improving the dynamic model of the system. Therefore, it is significant to conduct studies to apprehend dynamic characteristics of such system and find some structural parameter design criterion to minimize the vibration amplitude.

     In this paper, a typical flexible slender truss-structure mounted manipulator (FSTMM) for on-orbit assembly, as shown in Fig. 1(a), is studied. During the robot is assembling the truss structure, the robot is mounted on the long truss to assemble the next module of the truss. To focus on the fundamental issues of the dynamic problem, the long truss structure can be simplified as a flexible beam [3], [9] and only the first link of manipulator is considered. Such system is a typical beam–rotating link interaction system. A very limited work of such system has been reported. For example, the speed exclusion zone of a wind turbine, which was regarded as a typical cantilever beam structure attached with a rotating unbalanced mass, was investigated to prevent tower resonance [10]. The nonlinear dynamic behavior of a non-ideal unbalanced motor in a simple cantilever beam system was investigated and the results indicate there appears the jump phenomenon, namely the Sommerfeld effect [11], [12]. A model using RLC circuits with variable capacitance based on the saturation phenomenon is used to control the vibration of a hinged-hinged beam supporting unbalanced machine [13]. A nonlinear dynamical model of a robot manipulator consisting of a flexible cantilever beam and rigid second link is derived using a Lagrange equation and a Lyapunov-based feedback control law is then introduced to suppressing bending vibrations in the flexible link [14].

Conclusion

     Nonlinear dynamic of a flexible slender truss-structure mounted manipulator for on-orbit assembly, which can be simplified as a beam–rotating link interaction system, is theoretically investigated for primary and sub-harmonic resonance. The PDEs of system is established by using the D’Alembert principle incorporated with the moment balance method in which the slope of beam is considered. Such system is a typical parametrically excited system. The multiple scales method is used to solve the second-order ODEs which is reduced by the Galerkin’s method with a single mode approach from obtained PDEs. Then, the non-linear response, stability and bifurcations for primary and all sub-harmonic resonance conditions have been investigated by varying system parameters. By inspecting the results of this analysis, the following conclusions could be made:

     When the excitation frequency of manipulator ω1 near equal to the linear natural frequency of flexible truss-structure ωref , there will exist simple resonance condition and only have nontrivial steady state solution. The system resonance could be classified into monostable and bistable region by saddle-node (SN) bifurcation point. The steady state responses of the system in bistable region are determined by the initial condition and a slight change of initial conditions may cause a significant change. On the other hand, increasing the level of damping, as well as decreasing the mass of rigid manipulator and installation position of manipulator close to fixed end will reduce steady state responses of beam.