طرح ریزی فازی ناخوشایند برای تصمیم گیری چند معیاره
ترجمه نشده

طرح ریزی فازی ناخوشایند برای تصمیم گیری چند معیاره

عنوان فارسی مقاله: مدل طرح ریزی فازی ناخوشایند برای تصمیم گیری چند معیاره برای سیستم های پشتیبانی تصمیم گیری بیمارستان
عنوان انگلیسی مقاله: Hesitant fuzzy linguistic projection model to multi-criteria decision making for hospital decision support systems
مجله/کنفرانس: کامپیوتر و مهندسی صنایع – Computers & Industrial Engineering
رشته های تحصیلی مرتبط: مدیریت، مهندسی صنایع
گرایش های تحصیلی مرتبط: مدیریت صنعتی، لجستیک و زنجیره تامین
کلمات کلیدی فارسی: سیستم پشتیبانی تصمیم گیری بیمارستان، تصمیم گیری چند معیاره، اصطلاح زبانشناختی، مدل پروجکشن، روش تجزیه و تحلیل خطا
کلمات کلیدی انگلیسی: Hospital decision support system; Multi-criteria decision making; Hesitant fuzzy linguistic term set; Projection model; Error analysis method
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.cie.2017.11.023
دانشگاه: Business School – Sichuan University – China
صفحات مقاله انگلیسی: 45
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
ایمپکت فاکتور: 4.485 در سال 2018
شاخص H_index: 111 در سال 2019
شاخص SJR: 1.334 در سال 2018
شناسه ISSN: 0360-8352
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E5460
فهرست مطالب (انگلیسی)

Abstract

Graphical abstract

1- Introduction

2- Preliminaries

3- Hesitant fuzzy linguistic projection model to the MCDM problems

4- Comparative analyses

5- The selection of the medicine purchase project in the HDSS with hesitant fuzzy linguistic projection model

6- Conclusions

Acknowledgements

References

بخشی از مقاله (انگلیسی)

Abstract

To improve the ability and efficiency of the hospital management, it is needed for us to handle the decision making problems so as to assist the hospital decision support systems. Considering the complexity and urgency of the hospital management affairs, this paper proposes a projection model with hesitant fuzzy linguistic term sets to solve the decision making problems under consideration. The proposed model not only can describe the uncertainties of the problems and the hesitancy of the decision makers, but also can decrease subjective and increase objectives of the decision making results. Then, the error analysis method is provided to obtain the weights of the criteria with hesitant fuzzy linguistic information. Furthermore, we make comparisons between the proposed model and other decision making methods, and present its advantages and drawbacks. Finally, a case study on hospital decision support systems is made to illustrate the validity and applicability of the proposed model. 

Introduction

With the rapid development of information technology, the competition becomes rigorous in medical service market, which prompts the hospitals to improve their working efficiency and quality. Hospital information system (HIS) [12], which obtains the medical management policies and measurements by data analysis, was introduced to support the hospital management by inputting/outputting the medical activities data on a mobile terminal. By providing some successful examples and the experiences of computer applications, Kuperman et al. [9] presented the guidance on how to design a HIS with few mistakes. Afterwards, from the aspects of hospital stays and hospitalization cost, Evans et al. [28] used the HIS to assess the effects of adverse drug affairs. Nevertheless, the limitations of the HISs gradually emerge in practice with the accumulation of the clinical and administrative data. In such a case, the hospital decision support system (HDSS) [34], which possesses various data analysis and data mining techniques, was provided to deal with the extensive data of medical management. By the HDSS, some new findings and laws of the clinical medicine and hospital management can be obtained. Since the HDSS is effective to assist the hospital management strategies, many researchers have made efforts to investigate the problems related to the HDSS. Zhang et al.