دانلود مقاله توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی
ترجمه نشده

دانلود مقاله توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی

عنوان فارسی مقاله: توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی
عنوان انگلیسی مقاله: Weight-conserving characterization of complex functional brain networks
مجله/کنفرانس: NeuroImage
رشته های تحصیلی مرتبط: پزشکی
گرایش های تحصیلی مرتبط: مغز و اعصاب - روانپزشکی
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.neuroimage.2011.03.069
دانشگاه: Black Dog Institute and School of Psychiatry, University of New South Wales, Sydney, Australia
صفحات مقاله انگلیسی: 15
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2011
ایمپکت فاکتور: 5.410 در سال 2017
شاخص H_index: 307 در سال 2019
شاخص SJR: 3.679 در سال 2017
شناسه ISSN: 1053-8119
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E11943
فهرست مطالب (انگلیسی)

Abstract
Introduction
Methods
Results
Discussion
Acknowledgments
References

بخشی از مقاله (انگلیسی)

Abstract

Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures of centrality (measures of the functional influence of individual brain regions). Characterizations of functional networks are increasing in popularity, but are associated with several important methodological problems. These problems include the inability to characterize densely connected and weighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions of these networks, and the absence of a network null model for testing hypotheses of association between observed nontrivial network properties and simple weighted connectivity properties. In this study we describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and centrality to fully connected and weighted complex networks, describe the detection of degenerate high-modularity partitions of these networks, and introduce a weighted-connectivity null model of these networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong correlations between two complementary measures of centrality in resting-state functional magnetic resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable characterizations and comparisons of functional brain networks across conditions and subjects.