حفظ ویژگیهای سلولهای بنیادی بعد از قرار گرفتن در معرض شیمی درمانی ضد متابولیسم
ترجمه نشده

حفظ ویژگیهای سلولهای بنیادی بعد از قرار گرفتن در معرض شیمی درمانی ضد متابولیسم

عنوان فارسی مقاله: سلولهای بنیادی مزانشیمی ویژگیهای سلولهای بنیادی خود را بعد از قرار گرفتن در معرض شیمی درمانی ضد متابولیسم حفظ می کنند
عنوان انگلیسی مقاله: Mesenchymal stem cells preserve their stem cell traits after exposure to antimetabolite chemotherapy
مجله/کنفرانس: تحقیقات سلولهای بنیادی - Stem Cell Research
رشته های تحصیلی مرتبط: پزشکی، زیست
گرایش های تحصیلی مرتبط: پزشکی مولکولی، ژنتیک پزشکی، آنکولوژی، علوم سلولی و مولکولی، ژنتیک، ایمنی شناسی
کلمات کلیدی فارسی: سلولهای استرومال مزانشیمی، سلولهای بنیادی مزانشیمی، داروهای ضد سرطان، فلورواوراسیل، جمیستابین، نئوپلاسم، سلولهای بنیادی
کلمات کلیدی انگلیسی: Mesenchymal stromal cells (MSCs)، Mesenchymal stem cells (MSCs)، Antineoplastic agents، Fluorouracil، Gemcitabine، Neoplasms، Stem cells
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.scr.2019.101536
دانشگاه: Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 1/370 در سال 2018
شاخص H_index: 55 در سال 2019
شاخص SJR: 0/772 در سال 2018
شناسه ISSN: 1873-5061
شاخص Quartile (چارک): Q2 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13061
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Materials and methods

3- Results

4- Discussion

References

بخشی از مقاله (انگلیسی)

Abstract

Background

Mesenchymal stem cells (MSCs) participate in the regeneration of tissue lesions induced by antimetabolite chemotherapy; however, the influence of this class of anti-cancer compounds on the stem cells remains largely unknown.

Methods

The survival of MSCs after exposure to 5-fluorouracil (5-FU) and gemcitabine was measured by viability and clonogenic assays. MSC morphology, surface marker expression, adhesion potential, cellular velocity and differentiation potential were determined after antimetabolite treatment. Cell cycle distribution and apoptosis were assessed using flow cytometry, and senescence induction was evaluated by beta-galactosidase staining. Gene expression arrays were used to analyze the expression of enzymes involved in DNA metabolism and multidrug resistance.

Results

Here, we show that human primary bone marrow MSCs are relatively resistant to treatment with the widely used antimetabolite drugs 5-FU and gemcitabine. The stem cells were able to largely retain their functional abilities and defining stem cell traits after antimetabolite exposure. MSCs surface markers were found stably expressed, and the characteristic multi-lineage differentiation potential was maintained irrespective of 5-FU or gemcitabine treatment. High expression levels of enzymes involved in DNA metabolism and multidrug resistance transporters may contribute to the resistance to antimetabolite chemotherapy.

Discussion

The observed resistance and functional integrity may form the basis for further investigations of MSCs as a potential therapy for antimetabolite-induced tissue damage.

Introduction

Antimetabolite compounds comprise a large group of substances that inhibit components of the cellular metabolism and are widely used for the treatment of cancers, benign proliferative diseases or autoimmune diseases (Peters et al., 2000; Cipriani et al., 2014; Batista et al., 2010; Green et al., 2014). Many antimetabolite cancer agents exhibit structural similarities to the purine or pyrimidine bases of DNA and act by competitively inhibiting the synthesis of these molecules or their incorporation into nascent DNA strands, thereby blocking DNA replication (Kinsella et al., 1997; Hatse et al., 1999). Due to their efficiency against many cancer types, cytostatic antimetabolites form the largest group of anticancer agents currently in clinical use (Johnston et al., 1996). The prototypical antimetabolite cancer drug, 5-fluorouracil (5-FU) was developed as a pyrimidine analogue and received approval for clinical utilization in the early 1960s; 5-FU has since been introduced intro treatment protocols for breast, skin, head-and-neck, pancreatic, esophageal, gastric, colorectal and anal cancers (O'Connell et al., 1994; Jacobs et al., 1992; Berlin et al., 2002; Cunningham et al., 2006; AlBatran et al., 2016). While the drug's exact mechanism of action is yet to be completely understood, it involves blocking of the enzyme thymidylate synthase, resulting in a lack of phosphorylated deoxythymidine and a toxic accumulation of deoxyuridine (Hatse et al., 1999). Gemcitabine is a newer antimetabolite drug and was approved for clinical use in 1995; it is phosphorylated intracellularly and can then be incorporated into DNA instead of cytidine nucleotides. As it does not lead to DNA strand breaks, its incorporation is masked for physiological DNA repair mechanisms, thus creating commonly irreparable DNA damage (Plunkett et al., 1995). Gemcitabine is used against pancreatic, bladder, non-small cell lung, ovarian and breast cancers (Berlin et al., 2002; Messing et al., 2018; Cardenal et al., 1999). Both 5-FU and gemcitabine have well-known myelosuppressive effects that may result in life-threatening leukopenia or thrombopenia (Okusaka et al., 2006).