مسیرهای نوآوری در ساخت مواد افزودنی
ترجمه نشده

مسیرهای نوآوری در ساخت مواد افزودنی

عنوان فارسی مقاله: مسیرهای نوآوری در ساخت مواد افزودنی: روش هایی برای ردیابی مسیرهای پدید آمده و انشعابی از نمونه سازی اولیه سریع به برنامه های جایگزین
عنوان انگلیسی مقاله: Innovation pathways in additive manufacturing: Methods for tracing emerging and branching paths from rapid prototyping to alternative applications
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت نوآوری و فناوری، مدیریت تکنولوژی
کلمات کلیدی فارسی: مسیر انشعابی، خط سیر، مسیرهای نوآوری، الگو، سناریو صنعتی، سطح مزو
کلمات کلیدی انگلیسی: Branching path، Trajectory، Innovation pathways، Paradigm، Industry scenario، Meso-level
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2018.07.012
دانشگاه: Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), CNRS (UMR 9003), IFRIS, Université Paris-Est Marne-la-Vallée, France
صفحات مقاله انگلیسی: 18
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13398
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Frameworks to explore trajectories and branching paths of development

3. Data sources and methods

4. Exploring the starting point: Rapid Prototyping as root of many branches?

5. Exploring potential branching innovation pathways

6. Discussion

7. Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

In recent years, the Forecasting Innovation Pathway approach (FIP) has shown to be a promising set of tools to capture potential developments in emerging fields through capturing indications of endogenous futures. However, the FIP approach is reliant on a clear demarcated area to study, a challenge for emerging technology fields where uncertainty and rhetoric abound. This paper presents an addition to the FIP toolbox that helps characterise and demarcate boundaries of emerging fields to allow for deeper analysis through other FIP methods. We illustrate this approach through an exercise for 3D printing technology (also known as Additive Manufacturing). We show that 3D printing can be represented by a dominant design: a tri-partite configuration of printer, material and digital design software. In the past decade we have seen significant branching from applications in rapid-prototyping to medical, fashion, aeronautics and supply chain management with a variety of elements coming together in tri-partite configurations. The paper adds to the current FTA literature an approach building on evolutionary theories of technical change to help with such situations – emerging, evolving and branching ‘innovation pathways’. Moreover, we developed a methodology to construct these innovation paths.

Introduction

Characterising emerging technology fields is fraught with difficulties. Heterogeneous data, compounded by hype and promise, raises a challenge for future-oriented technology analysis (FTA): how best to approach, systematise and interrogate the data to filter out real evidence on emerging technology trajectories. This is a challenge for relatively clear emerging technologies, but what about those areas which are composed of technology families, perhaps developing at different rates but entangled together? An interesting example of this is additive manufacturing (AM) or 3D Printing. 3D printing uses additive processes for the fabrication of objects in three-dimensions direct from a digital image. The earliest application was rapid-prototyping, around which a community of practice including a number of scientific journals, emerged. Throughout the 1990s and early 2000s, dedicated conferences, journals and user groups were established to promote the relatively discrete and incremental evolution of additive rapid prototyping. Today, AM is hailed as a revolution and is featured on the cover of publications such as The Economist (“Print me a Stradivarius”, ۲۰۱۱), Wired (Anderson, 2012a) and the MIT Technology Review (LaMonica, 2013). AM is finding a place on factory floors, surgeries1 and in space.2 It is also equipping households as well as FabLabs and hacker spaces of the self-labelled community of “makers” (Bosqué, ۲۰۱۴),۳ in classrooms4 and public libraries. These examples indicate a visible shift in use of the technology from the original application of rapid-prototyping to other areas. What is not so evident is to what extent the different uses additive manufacturing are co-occurring with an evolution and diversification of the additive manufacturing technologies themselves.