ماهیت مخرب دیجیتالی شدن
ترجمه نشده

ماهیت مخرب دیجیتالی شدن

عنوان فارسی مقاله: روشی برای پیش بینی ماهیت مخرب دیجیتالی شدن در صنعت ماشین سازی
عنوان انگلیسی مقاله: A method for anticipating the disruptive nature of digitalization in the machine-building industry
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت صنعتی، نوآوری تکنولوژی
کلمات کلیدی فارسی: پیش بینی فناوری، مقیاس آنالوگ بصری، فناوری های مخرب، تحول صنعت، شکل گیری استراتژی
کلمات کلیدی انگلیسی: Technology foresight، Visual analogue scale، Disruptive technologies، Industry transformation، Strategy formation
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2018.07.044
دانشگاه: Tampere University of Technology, PO BOX 541, FI-33101 Tampere, Finland
صفحات مقاله انگلیسی: 12
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: دارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13404
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Data and methods

3. Results

4. Discussion and conclusions

Appendix A. Questionnaire used in our study

References

بخشی از مقاله (انگلیسی)

Abstract

The purpose of this paper is to create a technology foresight method in which the visual analogue scale is used to harness the wisdom of expert crowds, namely, industry experts, in anticipating potential disruptions in an industry. In an empirical demonstration, we investigate experts’ views and perceptions of possible future disruption caused by digitalization in an established machine-building industry. We demonstrate the usability of the proposed method in detecting future worldviews of experts grouped by their position in the value chain. The results show polarized responses, with considerable clustering among groups. For example, respondents who were inclined to view digital technologies as disruptive (i.e., as changing the paradigm of value creation in machine-building) also viewed them as related more to service and business models than to products and operation. We discuss the theoretical and practical contributions of the proposed method and suggest fruitful avenues for future research.

Introduction

Disruptive innovation brings to an industry new performance parameters that existing products do not provide (Christensen, 1997), and disruptive innovations often promise lower prices. The offering of disrupters then contrasts with incumbent firms that provide performances that overshoot mass markets with expensive price tags. Disruption in an industry is also a process that comes about with new business models utilized by disrupters, thus shaking the positions of incumbents (Christensen et al., 2015). Disruptive innovation theory has been under close scrutiny in academic research [see further e.g. (King and Baatartogtokh, 2015; Markides, 2006; Yu and Hang, 2010)] while spreading widely to the practicing community (Nagy et al., 2016; Sampere et al., 2016). The need to detect and anticipate disruptive innovations is the cornerstone of disruptive innovation (Christensen, 2006; Mäkinen and Dedehayir, 2014; Paap and Katz, 2004), and the normative purpose of disruptive innovation theory is to seek an understanding of why incumbents, in many cases with ample resources, fail to compete with smaller disrupters. The question of how to anticipate disruptive innovations has attracted much attention [see e.g. (Adner, 2002; Hüsig, 2009; Keller et al., 2008)] and various approaches have been proposed [see e.g. (Cheng et al., 2017; Dotsika and Watkins, 2017; Klenner et al., 2013; Momeni and Rost, 2016)] urging industry agents to exercise forward-looking searches and foresight activities. Moreover, there have recently been calls for more empirical research on these forwardlooking search processes (Rohrbeck et al., 2015).