کنترل ایمنی مواد غذایی با روش تجزیه و تحلیل کنترل کیفیت
ترجمه نشده

کنترل ایمنی مواد غذایی با روش تجزیه و تحلیل کنترل کیفیت

عنوان فارسی مقاله: هشدار اولیه خطر و کنترل ایمنی مواد غذایی بر اساس یکپارچه سازی فرآیند تحلیل سلسله مراتبی بهبود یافته با روش تجزیه و تحلیل کنترل کیفیت
عنوان انگلیسی مقاله: Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method
مجله/کنفرانس: کنترل مواد غذایی - Food Control
رشته های تحصیلی مرتبط: صنایع غذایی
گرایش های تحصیلی مرتبط: کنترل کیفی و بهداشت
کلمات کلیدی فارسی: ایمنی مواد غذایی، هشدار اولیه خطر، ماتریس خطر، آنالیز کنترل کیفیت، فرایند تحلیل سلسله مراتبی، وزن آنتروپی
کلمات کلیدی انگلیسی: Food safety، Risk early warning، Risk matrix، Quality control analysis، Analytic hierarchy process، Entropy weight
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.foodcont.2019.106824
دانشگاه: Key Laboratory of Ministry of Education for Engine Health Monitoring and Networking, Beijing University of Chemical Technology, Beijing, 100029, China
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4/418 در سال 2019
شاخص H_index: 103 در سال 2020
شاخص SJR: 1/450 در سال 2019
شناسه ISSN: 0956-7135
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14485
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- The risk early warning method

3- Case study

4- Discussion

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Food safety risks has received great attention in all world. And the reasonable effectiveness of security warnings can reduce public panic and risk losses. Therefore, this paper proposes an improved risk early warning method for food safety detection data based on the analytic hierarchy process (AHP) integrating the quality control analysis method. The AHP based on the entropy weight can obtain risk values for food safety component data. And the risk matrix of the risk component is obtained by the risk probabilities of the components. Then the corresponding risk levels are calculated using the quality control analysis method to release the risk warning information. Finally, a case study of dairy product safety data from the GuiZhou province in China is conducted to verify the feasibility and reliability of the proposed method. Moreover, the proposed method can scientifically and reasonably determine the risk level information. Furthermore, the risk management is provided to effectively reduce risk losses of the country though relevant quality inspection departments.

Introduction

With the rapid development of the economy, the food safety and quality have raised a higher requirement. If making correct and timely warning of food safety, people's fears will be alleviated, and the harm caused by the food security crisis will be reduced. Nowadays, there are more panic and unintended consequences bring by false warnings. And the food safety risk is serious. Meanwhile, more and more food safety problems involving complex food safety data are occurred (Ma, Hou, Liu, & Xue, 2016). Because the food safety risk monitoring foundation of China is weak, it is very important to customize a risk monitoring model based on the basic national conditions (Tang, 2013). Due to the superior processing characteristics of complex food safety data technology, many dig data analysis and artificial intelligence methods of food safety risk assessment and early warning were proposed (Liu, Li, Yang, & Guo, 2018a; Wang, Yang, Luo, He, & Tan, 2015). Samuel et al. (Samuel, Asogbon, Sangaiah, Fang, & Li, 2017) used the fuzzy analysis hierarchical process (AHP) technique to calculate the global weight of attributes based on their individual contributions and predicted the high frequency risk of patients by training the artificial neural network (ANN) classifier. Wang et al. (Wang & Yue, 2017) formulated an early warning strategy for the safety risks arising from food transportation in the real-time monitoring of food safety to reduce the risk of food supply chain.