بررسی تاثیر مدیریت داده های بزرگ بر رضایت مشتری و عملکرد سازمانی
ترجمه نشده

بررسی تاثیر مدیریت داده های بزرگ بر رضایت مشتری و عملکرد سازمانی

عنوان فارسی مقاله: مدیریت داده های بزرگ در صنعت خرده فروشی سنگاپور: بررسی تاثیر بر رضایت مشتری و عملکرد سازمانی
عنوان انگلیسی مقاله: Managing big data in the retail industry of Singapore: Examining the impact on customer satisfaction and organizational performance
مجله/کنفرانس: مجله مدیریت اروپایی - European Management Journal
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت عملکرد، مدیریت کسب و کار، مدیریت منابع انسانی، بازاریابی
کلمات کلیدی فارسی: تجزیه و تحلیل داده های بزرگ، مدیریت داده های بزرگ، عملکرد سازمانی، رضایت مشتری، صنعت خرده فروشی، سنگاپور
کلمات کلیدی انگلیسی: Big data analytics، Big data management، Organizational performance، Customer satisfaction، Retail industry، Singapore
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.emj.2020.04.001
دانشگاه: Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, 400067, China
صفحات مقاله انگلیسی: 37
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 4/041 در سال 2019
شاخص H_index: 89 در سال 2020
شاخص SJR: 1/173 در سال 2019
شناسه ISSN: 0263-2373
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14762
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Literature review

3- Research design and methodology

4- Findings and discussion

5- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

Much of the research on big data analytics has been centered on technical or system development. Research has been carried out on the usage of big data analytics to understand customer relationships and experience, amongst others. Still, there is a lack of research in the retail industry considering big data management, examining the impact on customer satisfaction and organizational performance in the retail sector. Retailers explore analytics to gain a unified picture of their customers and operations across the store or online channels and make strategic decisions contributing to the growth of the retail industry. Thereof, this study has been conducted by majorly focusing on the Singapore retail industry to clarify the feasibility of big data management analytics. Quantitative research method was employed involving 500 participants from the retail industry of Singapore. The results of the study stated that amongst the different big data analytics utilized within the retail industry of Singapore, social media analytics had been majorly answered by the participants. Future researchers can study about the upcoming retail trends in Singapore and how the effects of big data analysis changed in the past few years and deal with the unexpected future recessions in the retail industry within Singapore.

Introduction

Several organizations suffer to maintain large sets of data and the related nontraditional data structures. Different factors of expanding data management skills of an organization and enhancing the portfolios in terms of data management software are also implemented for big data management. Such measures help in increasingly automating the operations of the organization, and the outcome of such processes is the big data management (BDM). The big data should be permanently placed within the data management system of organizations (Russom, 2011). The ability to access, analyze, and manage enormous data volumes besides the fast evolution of information architecture is increasingly critical for retailers who intend to improve business and performance efficiency. Although the key to success is suitable customer experience, operational efficiency, loyalty, and customer retention, the demand of anticipation is significant for the proficient management of inventory, cash, and overall profitability. While retailers grow and extend in the diverse market, the data type that is commonly managed has become more complex. However, the analysis of such complex data leads to a comprehensive understanding of the product's path to profitability (Ernst and Young, 2014).