پیش بینی عملکرد مدیریت پروژه
ترجمه نشده

پیش بینی عملکرد مدیریت پروژه

عنوان فارسی مقاله: تسخیر ناهمگونی در منابع هماهنگ برای پیش بینی دقیق (کمتر به طور جداگانه) عملکرد مدیریت پروژه اصلی
عنوان انگلیسی مقاله: Capturing heterogeneities in orchestrating resources for accurately forecasting high (separately low) project management performance
مجله/کنفرانس: مجله بین المللی اقتصاد تولید - International Journal Of Production Economics
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت پروژه، مدیریت عملکرد، مدیریت دانش، مدیریت استراتژیک
کلمات کلیدی فارسی: الگوریتم ها، تنظیمات، اثربخشی مدیریت دانش، عملکرد، مدیریت پروژه، سرمایه اجتماعی
کلمات کلیدی انگلیسی: Algorithms، Configurations، Knowledge management effectiveness، Performance، Project management، Social capital
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijpe.2019.107556
دانشگاه: Coastal Carolina University, Wall College of Business of Administration, P. O. Box 261954, Conway, SC, 29528, USA
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 6/344 در سال 2019
شاخص H_index: 155 در سال 2020
شاخص SJR: 2/475 در سال 2019
شناسه ISSN: 0925-5273
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
تعداد صفحات مقاله انگلیسی: 60
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
کد محصول: E14836
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست انگلیسی مطالب

Abstract


1- Introduction


2- Literature review on project success/failure modeling


3- Complexity theory tenets


4- Methods


5- Findings


6- Discussion


7- Conclusion


References

نمونه متن انگلیسی مقاله

Abstract


Applying complexity theory tenets, the study here contributes an asymmetric modeling perspective for examining resources orchestrations that indicate high (separately low) project management performance (PMP) accurately. Complexity theory tenets include recognizing that the causal conditions resulting in high PMP have different conditions (i.e., ingredients) typically than the causal conditions resulting in low PMP—adopting this perspective supports the usefulness of asymmetric point or interval estimation rather than the currently pervasive symmetric approach to theory construction and empirical modeling of variable directional relationships (VDR). This study constructs a general model and specific configurational propositions that include social capital, processes, and knowledge management effectiveness as causal conditions indicating case outcomes of high and separately low PMP. Using survey data, the study includes examining propositions and models empirically on the causal conditions for completed projects (n = 302, USA sample of executives in product and service industrial firms). The findings support the perspective that high (as well as low) PMP depends on resource orchestration (configurational) antecedent conditions. The findings serve to support the general proposition that applications of complexity theory in project management research respond effectively in building in the requisite variety for deep understanding and accurate forecasting of performance outcomes. This study includes contributions to theory and empirical research that support the perspective that separate sets of resource orchestrations of alternative complex antecedents (rather than a VDR, symmetric, net effects perspective) forecast high (low) project management performances accurately.


Introduction


Gigerenzer’s (1991) wisdom underpins the present study: what tools scientists use influences the theories that they construct and restricts/focus their data collection and interpretation of findings. He further notes, “The power of tools to shape, or even to become theoretical concepts is an issue largely ignored in both the history and philosophy of science” (Gigerenzer, 1990: 254). The pervasive adoption of correlation (r), multiple regression analysis (MRA), and structural equation modeling (SEM) in constructing and testing in research in general along with null hypothesis significance tests (NHSTs) without questioning the usefulness of these tools versus alternative tools illustrate the two quoted statements from Gigerenzer (1991). Given their pervasive use in project management, and the telling weaknesses of using r, MRA, and SEM as Armstrong (2012), Fiss (2007, 2011), Hubbard (2015), McCloskey (2002), Trafimow and Marks (2015), Wasserstein and Lazar (2016), Woodside (2019), and Ziliak and McCloskey (2008) describe, supports the call that the present study illustrates theoretically and empirically for moving away from symmetrical to asymmetrical theory construction and empirical analysis. This study proposes and tests two sets of issues in project management research.

  • اشتراک گذاری در

دیدگاه خود را بنویسید:

تاکنون دیدگاهی برای این نوشته ارسال نشده است

پیش بینی عملکرد مدیریت پروژه
نوشته های مرتبط
مقالات جدید
لوگوی رسانه های برخط

logo-samandehi

پیوندها