Abstract
۱٫ Introduction
۲٫ Conclusion
Contributors
Declaration of competing interest
Acknowledgements
References
Abstract
The novel coronavirus infection that initially found at the end of 2019 has attracted great attention. So far, the number of infectious cases has increased globally to more than 100 thousand and the outbreak has been defined as a pandemic situation, but there are still no “specific drug” available. Relevant reports have pointed out the novel coronavirus has 80% homology with SARS. In the difficulty where new synthesized drug cannot be applied immediately to patients, “conventional drug in new use” becomes a feasible solution. The first medication experience of the recovered patients in the US has led remdesivir to be the “specific drug”. China has also taken immediate action to put remdesivir into clinical trials with the purpose of applying it into clinical therapeutics for Corona Virus Disease 2019 (COVID-19). We started from the structure, immunogenicity, and pathogenesis of coronavirus infections of the novel coronavirus. Further, we analyzed the pharmacological actions and previous trials of remdesivir to identify the feasibility of conducting experiments on COVID-19.
Introduction
The novel coronavirus 2019 (2019-nCoV), officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a newlyemerged human infectious coronavirus. Since December 2019, it has spread rapidly in China in a short period of time. As of March 17, 2020, there have been 81116 confirmed cases and 3231 deaths. It has also outbreak in other countries, such as Korea, Japan, Italy, Singapore, and Iran, with a total of 85296 cases confirmed. Due to it is a newlyemerged virus, researchers have taken quick actions to isolate the virus and perform gene sequencing, making identifying treatments possible. Even so, it takes time to develop new drugs and vaccines, as well as to explore biotherapeutics, thus it is unlikely to be applied to patients with urgent need. Therefore, “conventional drug in new use” becomes a viable solution. The SARS-CoV-2 is 80% homologous with the acute respiratory syndrome-associated coronavirus (SARS-CoV), which also broke out in China in 2002, and some enzymes are even more than 90% homologous [1]. Consequently, we are expecting to find drugs for the treatment of COVID-19 from the experience of SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV). Some drugs, such as ribavirin, interferon, lopinavir, and corticosteroids, have been used in patients with SARS or MERS [2], within the selection range of “conventional drug in new use”. Through clinical treatment of the COVID-19, it has been found that neuraminidase inhibitors (oseltamivir, peramivir, zanamivir), ganciclovir, acyclovir, ribavirin are ineffectual and not recommended for clinical application [3].