سیستم های پاسخگو به محرک برای درمان هدفمند سرطان
ترجمه نشده

سیستم های پاسخگو به محرک برای درمان هدفمند سرطان

عنوان فارسی مقاله: نانوحامل های پلیمری به عنوان سیستم های پاسخگو به محرک برای درمان هدفمند تومور (سرطان): پیشرفت های اخیر در دارورسانی
عنوان انگلیسی مقاله: Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery
مجله/کنفرانس: مجله دارویی سعودی - Saudi Pharmaceutical Journal
رشته های تحصیلی مرتبط: پزشکی، داروسازی، بیوتکنولوژی
گرایش های تحصیلی مرتبط: خون و انکولوژی، داروشناسی، پزشکی مولکولی، زیست فناوری پزشکی، نانو فناوری دارویی
کلمات کلیدی فارسی: پاسخگو به محرک، پلیمر هوشمند، نانوذرات پلیمری، درمان سرطان، تحویل دارو
کلمات کلیدی انگلیسی: Stimuli-responsive، Smart polymer، Polymeric nanocarriers، Cancer therapy، Drug delivery
نوع نگارش مقاله: مقاله مروری (Review Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jsps.2020.01.004
دانشگاه: Department of Chemistry, Taibah University, Madina, Saudi Arabia
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 3/758 در سال 2019
شاخص H_index: 36 در سال 2020
شاخص SJR: 0/670 در سال 2019
شناسه ISSN: 1319-0164
شاخص Quartile (چارک): Q2 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14905
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- pH-responsive polymeric nanocarriers

3- Temperature-responsive polymeric nanocarriers

4- Redox potential-responsive polymeric nanocarriers

5- Enzyme-responsive polymeric nanocarriers

6- Light-responsive polymeric nanocarriers

7- Dual-responsive polymeric nanocarriers

8- Future perspectives

9- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

In the last decade, considerable attention has been devoted to the use of biodegradable polymeric materials as potential drug delivery carriers. However, bioavailability and drug release at the disease site remain uncontrollable even with the use of polymeric nanocarriers. To address this issue, successful methodologies have been developed to synthesize polymeric nanocarriers incorporated with regions exhibiting a response to stimuli such as redox potential, temperature, pH, and light. The resultant stimuli-responsive polymeric nanocarriers have shown tremendous promise in drug delivery applications, owing to their ability to enhance the bioavailability of drugs at the disease site. In such systems, drug release is controlled in response to specific stimuli, either exogenous or endogenous. This review reports recent advances in the design of stimuli-responsive nanocarriers for drug delivery in cancer therapy. In particular, the synthetic methodologies investigated to date to introduce different types of stimuli-responsive elements within the biomaterials are described. The sufficient understanding of these stimuli-responsive nanocarriers will allow the development of a better drug delivery system that will allow us to solve the challenges encountered in targeted cancer therapy.

Conclusions

In this review, it was focused on the most recent advances in the development of stimuli-responsive nanocarriers for drug delivery in cancer therapy. These smart drug delivery systems respond to the distinct changes in cancer cells, such as changes in pH gradient and elevated secretion of certain enzymes, rather than the conditions in normal cells. Targeting tumors with stimuliresponsive nanocarriers could not only increase the therapeutic benefit and minimize associated toxicity, but could also enhance the curative effect by specifically releasing the anti-cancer drug in a powerful precise mode, both temporally and spatially. The different approaches adopted to incorporate stimuli responsive elements within the polymeric nanocarriers were discussed, with a particular focus on polymeric materials with stimuliresponsive mechanisms in response to pH, redox potential, enzymes, temperature, and light. Despite the tremendous progress that has been made regarding the engineering of new stimuli-responsive materials, several challenges still remain to be addressed with respect to nanomedicine applications. For example, their biodegradability and biocompatibility profiles should be critically investigated prior to utilization in human clinical trials. Many of these systems have only been reported as an in vitro proof-of-concept and follow-up work in vivo preclinical models has been described for only a few. However, the translation of these stimuli-responsive delivery systems from the bench to the bedside might be facilitated, to some extent, if the regulatory requirements for human clinical trials are considered in light of the key features that render a biopolymer suitable for biomedical application, such as biocompatibility, biodegradability, high drug loading capability, programmable release, excellent in vivo stability, non-cytotoxicity, and ability to support effective targeting. Given the ongoing developments in the field of bionanotechnology along with the wide knowledge accumulated over recent years, it is convinced that the collaborative efforts of chemists, biologists, and medicinal and pharmaceutical scientists will revolutionize the design of responsive polymeric materials for cancer therapy to significantly improve both the quality and duration of the lives of patients with cancer.