چاپ سه بعدی داربستهای استخوانی با مواد زیستی هیبریدی
ترجمه نشده

چاپ سه بعدی داربستهای استخوانی با مواد زیستی هیبریدی

عنوان فارسی مقاله: چاپ سه بعدی داربستهای استخوانی با مواد زیستی هیبریدی
عنوان انگلیسی مقاله: 3D printing of bone scaffolds with hybrid biomaterials
مجله/کنفرانس: کامپوزیت ها قسمت B، مهندسی - Composites. Part B, Engineering
رشته های تحصیلی مرتبط: مهندسی پزشکی، پزشکی
گرایش های تحصیلی مرتبط: بیومواد، بیومکانیک، مهندسی بافت
کلمات کلیدی فارسی: مهندسي بافت، توليد استخوان، PLA/cHA، چاپ سه بعدی، ساخت هيبريد
کلمات کلیدی انگلیسی: Tissue engineering، Bone generation، PLA/cHA، 3D printing، Hybrid manufacture
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.compositesb.2018.09.065
دانشگاه: School of Engineering and Sustainable Development, De Montfort University, Leicester, UK
صفحات مقاله انگلیسی: 17
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 7/523 در سال 2019
شاخص H_index: 113 در سال 2020
شاخص SJR: 2/499 در سال 2019
شناسه ISSN: 1359-8368
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14931
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Materials

3- Method

4- Results and discussion

5- Conclusions

References

بخشی از مقاله (انگلیسی)

Abstract

In this research, a novel hybrid material bone implant manufacturing through the integration of two materials using additive manufacturing (AM) technology is proposed. Biomimetic application can manufacture high strength biomechanical implants with optimised geometry and mass. The combination of polymers allows a significant leap in the development and production of a great diversity of components and applications of biomaterials. A novel hybrid scaffold with a poly lactic acid (PLA) matrix reinforced with carbohydrate particles (cHA) is analysed using digital surface software in the mass proportions of 100/0, 95/5, 90/10 and 80/20 for application in tissue and regenerative engineering, seeking a higher proposition strength of PLA. Filaments are used to fabricate scaffolds by 3D printing, using the fused deposition method. The frameworks are submitted to bioactivity tests, surface roughness evaluation, apparent porosity and mechanical analysis. Analysis of the microstructure of the composite particle evaluates the 3D surface luminance structure and the profile structure. Cross-sectional views of the specimens are extracted and analysed, and the surface roughness, waviness profile, and Gaussian filter of the structures are observed. In summary the structures are checked and analysed by SEM and EDS where possible, to observe the bioactive behaviour of the materials. The relationship between cHA content and roughness is shown to be proportional. The mechanical properties are shown to be affected by the reduced interaction between the PLA matrix and the cHA particles.

1- Introduction

Findings from population statistical research institutes point to a rising life expectancy in the world population. As humans age, the risk of compromising organs, tissues and the body as a whole increases. Tissue engineering seeks to use biomaterials to replace conventional transplants. A biomaterial is defined as any substance or combination of materials, other than drugs or synthetic natural materials, which can be used, for any period, to partially substitute for any tissue, organ or function of the body for the purpose of maintaining or improving the lifespan of an individual [1]. A fundamental requirement of a biomaterial used in clinical medicine is that it is biocompatible, that is, it can coexist with human tissue without causing any undesirable or inappropriate effects [2, 3]. Biomaterials can be classified into three main categories: bioinert, intolerant materials that are not capable of inducing any biological interfacial bond between the implant and the host tissue [4, 5]; bioactive, capable of interacting with body tissues, forming chemical or biological bonds and favouring the development of processes such as implant fixation, colonisation and tissue regeneration; and bioreabsorbable, materials that are gradually reabsorbed until they disappear entirely and are wholly replaced by new tissue in vivo. In general, biomaterials can be classified into: natural, from plants and animals; and synthetic, which can be sub-categorised into metals, synthetic polymers, ceramics and composites [6, 7].