نکروپتوز سلولهای بنیادی ماهیچه ای
ترجمه نشده

نکروپتوز سلولهای بنیادی ماهیچه ای

عنوان فارسی مقاله: سرکوب اپی ژنتیکی تضعیف شده نکروپتوز سلولهای بنیادی ماهیچه ای برای بازسازی مؤثر عضلات دیستروفیک مورد نیاز است
عنوان انگلیسی مقاله: Attenuated Epigenetic Suppression of Muscle Stem Cell Necroptosis Is Required for Efficient Regeneration of Dystrophic Muscles
مجله/کنفرانس: گزارشات سلولی – Cell Reports
رشته های تحصیلی مرتبط: پزشکی
گرایش های تحصیلی مرتبط: مهندسی بافت، ژنتیک پزشکی
کلمات کلیدی فارسی: سلولهای بنیادی ماهیچه ای، بازسازی، نکروپتوز، دیستروفی ماهیچه، Chd4/NuRD، Ripk3
کلمات کلیدی انگلیسی: muscle stem cells، regeneration، necroptosis، muscle dystrophy، Chd4/NuRD، Ripk3
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.celrep.2020.107652
دانشگاه: Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
صفحات مقاله انگلیسی: 23
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 7.703 در سال 2019
شاخص H_index: 108 در سال 2020
شاخص SJR: 6.635 در سال 2019
شناسه ISSN: 2211-1247
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14968
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Summary

Graphical Abstract

Introduction

Results

Discussion

STAR★Methods

Acknowledgments

Supplemental Information

References

بخشی از مقاله (انگلیسی)

Summary

Somatic stem cells expand massively during tissue regeneration, which might require control of cell fitness, allowing elimination of non-competitive, potentially harmful cells. How or if such cells are removed to restore organ function is not fully understood. Here, we show that a substantial fraction of muscle stem cells (MuSCs) undergo necroptosis because of epigenetic rewiring during chronic skeletal muscle regeneration, which is required for efficient regeneration of dystrophic muscles. Inhibition of necroptosis strongly enhances suppression of MuSC expansion in a non-cell-autonomous manner. Prevention of necroptosis in MuSCs of healthy muscles is mediated by the chromatin remodeler CHD4, which directly represses the necroptotic effector Ripk3, while CHD4-dependent Ripk3 repression is dramatically attenuated in dystrophic muscles. Loss of Ripk3 repression by inactivation of Chd4 causes massive necroptosis of MuSCs, abolishing regeneration. Our study demonstrates how programmed cell death in MuSCs is tightly controlled to achieve optimal tissue regeneration.

Introduction

Skeletal muscle regeneration provides a paradigmatic example for the decisive role of tissue-resident stem cells and the necessity of cellular interactions to achieve organ restoration. Muscle stem cells (MuSCs; also known as satellite cells) are indispensable for muscle regeneration but require assistance and instructions from fibroblasts, endothelial cells, fibroadipogenic progenitor cells (FAPs), and immune cells, among others (Charge´ and Rudnicki, 2004; Tidball, 2011; Relaix and Zammit, 2012). Such cells not only provide critical support for MuSCs, enabling their expansion, but might also promote secondary cell death (Saclier et al., 2013; Latroche et al., 2015; Tidball and Villalta, 2010; Joe et al., 2010; Forbes and Rosenthal, 2014). Secondary cell death is not necessarily harmful but might elicit beneficial effects. For example, programmed cell death in FAPs, induced by TNFreleasing inflammatory macrophages, limits fibrosis in acutely damaged skeletal muscles (Lemos et al., 2015). Moreover, MuSCs might engage in a battle of the ‘‘survival of the fittest’’ to ensure that damaged or less fit stem cells are eliminated (Bowling et al., 2019). It has been proposed that tissue stem cells are routinely lost and replaced in a process called neutral cell competition, but many questions related to such a machinery, including the mechanisms by which unfit cells are removed, have yet to be answered (Klein and Simons, 2011). At present, it is not known whether and to what extent MuSCs succumb to programmed cell death in acutely damaged and continuously regenerating dystrophic muscles.