چکیده
کلید واژه ها
مقدمه
سیستم های فازی سلسله مراتبی
مقایسه منطق سلسله مراتبی با رویکردهای منطقی مرسوم
نتیجه گیری
منابع
Abstract
Keywords
Introduction
Hierarchical Fuzzy Systems
Comparison of hierarchical logic with conventional logic approaches
Conclusion
References
چکیده
مفهوم منطق فازی علاقه زیادی را برای پژوهشگران مختلف در زمینه های مختلف ایجاد کرده است. شاخه های مختلفی از منطق فازی در طول چهار دهه گذشته یا بیشتر در ادبیات ظاهر شده اند. از آنجایی که داده های مربوط به چندین برنامه به طور قابل توجهی افزایش یافته است، تعداد قوانین سیستم های فازی برای برنامه های کاربردی واقعی به طور تصاعدی افزایش یافته و غیرقابل مدیریت است. برای کاهش پیچیدگی یک سیستم فازی، منطق فازی سلسله مراتبی به عنوان یکی از قابل اجراترین گزینه ها ظاهر شد. این مقاله یک رویکرد مقدماتی برای طراحی سیستمی ارائه میدهد که شامل زیرسیستمهای فازی با ابعاد کوچک مختلف است که در آن همه زیرسیستمها در یک ساختار سلسله مراتبی مرتب شدهاند. این رویکرد تعداد زیادی از قوانین را مدیریت می کند و راهی را برای طراحی برنامه های کاربردی کلان داده پیشرفته مانند اینترنت اشیا، سیستم های هوشمند، امنیت سایبری و WSN ها هموار می کند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The concept of fuzzy logic has created an immense interest for various research workers in the different fields. Various offshoots of fuzzy logic appeared in the literature during the last four decades or so. As the data involved for several applications has grown considerably, the number of rules of fuzzy systems for real-life applications has increased exponentially and is unmanageable. To reduce the complexity of a fuzzy system, hierarchical fuzzy logic emerged as one of the most viable options. This paper gives an introductory approach to design a system that includes various small dimension fuzzy subsystems, where all subsystems are arranged in a hierarchical structure. This approach handles large numbers of rules and paves a way to design advanced big data applications such as IoT, Intelligent systems, cyber security and WSNs.
Introduction
In 1965, the term ‘fuzzy logic’ was introduced by Lotfi Zadeh in one of his papers [1] on fuzzy sets. Fuzzy logic provides an adequate route for conflict resolution and making real assessments. Fuzzy logic has the capability to deal with imprecise, uncertain and vague information. Fuzzy logic comprises linguistic variables that support the design of mathematical and realistic models. The fuzzy logic facilitates a huge number of real-life applications. In this paper, a concise review of the hierarchical fuzzy logic has been presented. This will pave a way for researchers to gain the necessary foundations keeping in view the explosion of large datasets in various fields . چ
Conclusion
Fuzzy logic has extensively been used for several decades in a variety of applications. Because of the explosion in data, the future of fuzzy logic research work will look for more advanced approaches for big data applications. Hierarchical systems offer the most viable option to overcome the limitation of dimensions possessed by conventional systems. Hierarchical systems can handle imprecise, uncertain and vague data. Hierarchical systems provide enhanced performance and efficiency due to reduced rule base and complexity. In this paper, an approach has been discussed by which any system can be designed in the form of desired hierarchical structure. The procedure is illustrated with the help of examples and the results of hierarchical systems match with the conventional systems. This paper will help researchers in exploring design in hierarchical systems and their applications in real-life and big data applications such as WSNs and IoTs.