چیکده
1. مقدمه
2. داده ها و روش ها
3. نتایج
4. بحث
5. نتیجه گیری
منابع
Abstract
1. Introduction
2. Data and methods
3. Results
4. Discussion
5. Conclusion
Funding
Data and materials availability
CRediT authorship contribution statement
Declaration of competing interest
Acknowledgements
References
چکیده
رویکردهای اقتصاد دایره ای معمولاً با دو چرخه به تصویر کشیده می شوند، که در آن چرخه بیولوژیکی با بازسازی در بیوسفر و چرخه فنی با استفاده مجدد، نوسازی و بازیافت برای حفظ ارزش و به حداکثر رساندن بازیابی مواد همراه است. این کار، در عوض، یک دیدگاه جایگزین برای مدیریت مواد مبتنی بر کربن ارائه میکند که این دو چرخه را ادغام میکند و امکان حذف تدریجی کربن فسیلی از سیستم مواد را فراهم میکند. هدف بررسی مزایا و پتانسیل جهانی یک سیستم بازیافت مشترک، به عنوان جایگزینی برای سیستم های بازیافت معمولی است که مواد مبتنی بر زیست توده (مانند چوب، کاغذ) را از مواد مبتنی بر فسیل (مانند پلاستیک) جدا می کند. فنآوریهای بازیافت ترموشیمیایی، تبدیل مواد زائد مبتنی بر کربن را به محصولات مصنوعی با کیفیت بالا، ارتقاء دایرهای و جلوگیری از تلفات کربن مانند انتشار کربن و تجمع زباله در محلهای دفن زباله و طبیعت، امکانپذیر میسازد. در اینجا، ساخت و تجزیه و تحلیل سناریوهای بازیافت مشترک نشان می دهد که چگونه استقرار فناوری های بازیافت ترموشیمیایی می تواند سیستم مواد را از استخراج منابع فسیلی جدا کند. علاوه بر این، اگر تجزیه در اثر حرارت و/یا تبدیل به گاز در مجموعه فناوری های بازیافت گنجانده شود، مصرف انرژی کاهش می یابد. در یک سیستم انرژی کربنزدایی شده، استفاده از بازیافت مشترک میتواند منجر به انتشار کربن تقریباً صفر شود، در حالی که در سیستمهای انرژی فشردهتر کربن، انتخاب مسیر بازیافت ترموشیمیایی کلیدی برای محدود کردن انتشار کربن است.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Circular economy approaches are commonly depicted by two cycles, where the biological cycle is associated with regeneration in the biosphere and the technical cycle with reuse, refurbishment, and recycling to maintain value and maximize material recovery. This work, instead, presents an alternative vision to the management of carbon-based materials that integrates the two cycles and enables the phasing-out of fossil carbon from the material system. The aim is to investigate the benefits and global potential of a co-recycling system, as an alternative to conventional recycling systems that separate biomass-based materials (e.g., wood, paper) from fossil-based materials (e.g., plastics). Thermochemical recycling technologies enable the conversion of carbon-based waste materials into high-quality synthetic products, promoting circularity and avoiding carbon losses such as carbon emissions and waste accumulation in landfills and nature. Here, the construction and analysis of co-recycling scenarios show how the deployment of thermochemical recycling technologies can decouple the material system from fossil resource extraction. Furthermore, energy use is reduced if pyrolysis and/or gasification are included in the portfolio of recycling technologies. In a decarbonized energy system, deployment of co-recycling can lead to near-zero carbon emissions, while in more carbon-intensive energy systems the choice of thermochemical recycling route is key to limiting carbon emissions.
Introduction
Carbon-based fuels (mainly fossil fuels but also biomass) account for about 90% of the current global primary energy supply. Carbon is also a building block in a wide range of materials (carbon-based materials; C-materials) used in society. While fossil fuel use is the main cause of anthropogenic greenhouse gas (GHG) emissions, and a transition away from the use of such fuels is essential to limit the global temperature increase to 1.5 °C (IPCC et al., 2018), the production and use of materials such as plastics, cement and steel entail significant GHG emissions (IEA, 2018; Jambeck et al., 2015). The use of biomass-based products can effectively reduce the use of fossil fuels and GHG-intensive materials. There is also scope for substituting existing biobased products with more benign products. For example, cellulose-based textiles can replace cotton which is associated with soil and water depletion, as well as harmful impacts on human health and biodiversity due to excessive use of pesticides and fertilizers (IPCC et al., 2019c; Niinimäki et al., 2020). However, the biomass supply potential is limited by resource constraints (Gerten, 2018) and implications of expanded biomass use for mitigation and other objectives depend on many factors, including soil and climate conditions, biomass type, land management system, scale and pace of deployment, and influence on land use (Calvin et al., 2021). For instance, cropland expansion for energy crop production may cause deforestation, with consequent GHG emissions and negative impacts on biodiversity (IPCC et al., 2019b).
Conclusion
A co-recycling scenario utilizing advanced thermochemical recycling is proposed and analyzed. The results show that such a scenario can combine natural and synthetic C-materials in the same recycling scheme and that enables to decoupling of the Carbon Material System from the extraction of fossil resources, as well as minimizing waste generation. Advanced thermochemical recycling enables the recovery of any carbon flow (CO2, natural or synthetic, losses, etc.) and the production of high-quality products. A focus on carbon recycling, instead of material recycling, can improve C-materials (wood, paper, plastics, and textiles) resource management, by increasing the resource utilization from 0.7 to 1.1 tC-material/tCRtM, i.e., producing more C-materials than resources used, as well as reducing the CMS losses by half.