چکیده
مقدمه
مروری بر مطالعات پیشین
مطالب و روش ها
نتایج و بحث
نتیجه گیری
منابع
Abstract
Introduction
Literature review
Materials and methods
Results and discussion
Conclusion
References
چکیده
مقاله حاضر با هدف تجزیه و تحلیل داده های بلندمدت بیست و یک ساله از امید به زندگی و سطوح آلاینده های PM10، PM2.5، CO، O3، SO2 و NO2 در تهران، ایران، به منظور بررسی همبستگی بین آلودگی هوا و زندگی می باشد. توقع، انتظار. داده ها با استفاده از ضریب همبستگی پیرسون و مدل رگرسیون تجزیه و تحلیل شدند. تجزیه و تحلیل رگرسیون داده های مورد استفاده برای درک چگونگی تغییر سطح امید به زندگی با تغییر هر یک از آلاینده های ذکر شده در بالا و ثابت نگه داشتن سایر متغیرهای مستقل انجام می شود. برای تحلیل رگرسیون از روش Enter استفاده می شود. سطح امید به زندگی در شهر تهران در سال 1379 70.18 سال و در سال 2020 به 77.53 افزایش یافت. محاسبه داده های بلندمدت 21 ساله شاخص آلودگی هوا حاکی از عدم روند یکنواخت و خطی است، اما روند امید به زندگی در حال افزایش است. با توجه به محاسبه مربع R تعدیل شده، نتیجه میشود که 1/89 درصد از تغییرات متغیر وابسته (امید به زندگی) توسط متغیرهای مستقل (آلایندههای هوا) توضیح داده میشود که مقدار زیادی است و یک مدل برازش در نظر گرفته میشود. نتیجه تحلیل واریانس رگرسیون برای فرضیه های آماری نیز نشان می دهد که مقدار Sig کمتر از 05/0 است و در نتیجه فرضیه همبستگی خطی بین دو متغیر را تایید می کند. با این حال، ضریب همبستگی یک تابع خطی ساده نیست و افزایش امید به زندگی را باید در رشد سایر متغیرهای کنترلی مانند بهبود سلامت، درمان، تغذیه و کیفیت زندگی جستجو کرد.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
The present paper aims to analyze twenty-one-year long-term data of life expectancy and levels of PM10, PM2.5, CO, O3, SO2, and NO2 pollutants in Tehran, Iran, to investigate the correlation between air pollution and life expectancy. Data are analyzed using the Pearson correlation coefficient and regression model. The regression analysis of the data used is performed to understand how the level of life expectancy alters by changing any of the above-mentioned pollutants and keeping constant the other independent variables. Enter Method is used for regression analysis. The level of life expectancy in Tehran was 70.18 years in 2000 and increased to 77.53 in 2020. Calculation of 21-year long-term data on air pollution index indicates no uniform and linear trend, but the trend of life expectancy is increasing. According to the adjusted R-squared calculation, it is concluded that 89.1% of the changes in the dependent variable (life expectancy) are explained by independent variables (air pollutants), which is a large value and is considered a fit model. The result of regression analysis of variance for statistical hypotheses also reveals that the Sig value is less than 0.05, thereby confirming the hypothesis of linear correlation between the two variables. However, the correlation coefficient is not a simple linear function, and the increase in life expectancy should be sought in the growth of other control variables such as improved health, treatment, nutrition, and quality of life.
Introduction
Urban pollution is one of the major challenges of urbanization, which has threatened the urban environment. Urban pollution is mainly characterized by local air pollution, greenhouse gas emissions (Zheng and Kahn 2013), groundwater pollution, and soil pollution (Ma and Xu 2018). Urban pollutants can inhibit the ecological functions and processes of cities, and endanger people's lives, especially processes that provide vital benefts and services to humans (Wade 2018).
Every person is exposed to ambient air pollution on a daily basis, some to a greater extent and some to a lesser extent. Several severe pollution events, such as the Meuse Valley fog of 1930 (Firket 1936) and the infamous London fog episode of 1952 that killed thousands, have helped draw public attention (Logan 1953; Ministry of Health 1954). Although particulate and gaseous pollutants coexist and may have both health side efects (such as ozone) (Bell et al. 2004), the most convincing evidence suggests Airborne particulate matter (PM) as a major cause of the human disease (Pope and Dockery 2006; Brook et al. 2004; US EPA 2004). The PM itself is a heterogeneous amalgam of compounds that vary in concentration, size, chemical composition, surface area, and sources of origin. Although it may seem intuitive that PM poses a signifcant risk to lung health, general evidence suggests that most of the side efects of PM are on the cardiovascular system (Pope and Dockery 2006; Brook et al. 2004; US EPA 2004).
Conclusion
Life expectancy at birth is the average number of years a person is expected to live from birth and is mainly infuenced by a person's social status and genetic characteristics. This index shows that each person belonging to a certain generation will live an average of how many years until the end of life. Life expectancy at birth is an important indicator of the cultural, social, and economic and health status of any society. The World Health Organization (WHO) estimates the human development index, which is one of the most important indicators of development of countries and cities, using the life expectancy index along with indicators of per capita income, gross national product, and literacy rate.
H0: there is no trend in this time series.
Ha: there is a trend in this time series.