خلاصه
مقدمه
مقدماتی برای حفظ حریم خصوصی متفاوت
حفظ حریم خصوصی متفاوت در یادگیری عمیق برای داده بزرگ
روش های حفظ حریم خصوصی برای یادگیری عمیق در داده های بزرگ
فرمول مسأله
نتیجه
منابع مالی
بیانیه در دسترس بودن داده ها
منابع
Abstract
Introduction
Preliminaries for differential privacy preservation
Differential privacy preservation in deep learning for big dat
Privacy preservation methods for deep learning in big data
Problem formulation
Conclusion
Funding
Data availability statement
References
چکیده
در سالهای اخیر، یادگیری عمیق (DL) در بسیاری از زمینهها، مانند تشخیص متن و تجزیه و تحلیل دادهها، فراگیر شده است، که به این دلیل محدود شده و به طور فزایندهای در برنامههای امنیتی و حفاظت از داده استفاده میشود. بنابراین، روش DL به رشد قابل توجه تجزیه و تحلیل داده های بزرگ دست یافته است تا از حملات مختلف جلوگیری کند. این مقاله روشهای مختلفی را برای محافظت از حریم خصوصی برای DL در تجزیه و تحلیل دادههای بزرگ ارائه میکند. ابتدا برخی از حملات احتمالی توضیح داده می شود و سپس برخی از رویکردهای اساسی برای محافظت از حریم خصوصی در پلتفرم های کلان داده توضیح داده می شود. در هر بخش، اشکالات حملات مربوطه توضیح داده شده است، و اثربخشی روش های مبتنی بر DL در حفظ حریم خصوصی مورد بحث قرار گرفته است. در نهایت، یک راه حل موثر برای افزایش حفظ حریم خصوصی در مدل های DL ارائه شده است. چندین روش حفظ حریم خصوصی مبتنی بر DL برای تجزیه و تحلیل داده های بزرگ و مزایا و معایب آنها شرح داده شده است. در نهایت، اشکالات روشهای مبتنی بر DL برجسته میشوند و دامنه آینده برای رسیدگی به این مسائل ارائه میشود.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
In recent years, deep learning (DL) has been ubiquitous in several areas, such as text recognition and data analysis, limited by this and increasingly used in security and data protection applications. Thus, the DL method has achieved remarkable big data analysis growth to avoid different attacks. This paper presents different methods for protecting privacy for DL in big data analysis. First, some possible attacks are explained, and then some basic approaches to protecting privacy in big data platforms are explained. In each section, drawbacks of the corresponding attacks are elaborated, and DL-based methods’ effectiveness in privacy preservation has been discussed. Finally, an effective solution for enhancing privacy preservation in DL models is given. The several DL-based privacy preservation methods for big data analysis and their advantages and disadvantages are elaborated. At last, drawbacks of DL based methods are highlighted, and future scope is given to address these issues.
Introduction
In the era of digital technology, incredible amounts of data are produced by multiple organizations such as social media, banks, end sources and hospitals, etc. Social media generates tons of data every day, leading to huge data.1 Big data refer to the data collected from various sources such as machines, people, and things. The human-derived data can be individuals, text generation, and videos uploaded to the Internet. Machines generate various files, multimedia, and audits, while the data collected by multiple digital sensor devices are called data of things.2,3 Characteristics of big data are expressed by 5 V; large volume, higher velocity, greater variety, high value, and lower veracity. Volume denotes the speed of data collected, while the type of collected data is called diversity.4 Technological advances in healthcare make it easier to collect patient data electronically, which is presented as big data.5 In the modern medical system, patients are treated with multiple medical records. Thus, it is necessary to confirm secure data exchange to facilitate patient treatment in multiple hospitals.6
Conclusion
The technological advancements used the digital platform for data communication simultaneously, and data privacy is a prime concern. The data associated with several fields must be processed securely with information leakage. For analyzing a large amount of data, the DL methods are adopted. At the same time, several attacks related to these methods damage the data communication, especially in the case of the big data platform. Thus, DL privacy preservation has become an important research area due to the privacy concern of a large amount of private data. If an attacker accesses personal information, it will cause data loss to users. Moreover, the information leakage in DL is happened due to internal and external factors. Thus, an effective approach toward privacy protection schemes greatly influences the enhancement of privacy preservation in DL. Several privacy preservation methods are reviewed in this work and their pros and cons. The methods reviewed in this paper are classified based on anonymization, optimizationbased approaches, and cryptographic methods. Moreover, several possible attacks related to DL were recalled. We can conclude from these papers that DL-based methods are more effective than other classic methods.