دانلود مقاله کدگشای MIMO عظیم با کمک یادگیری عمیق
ترجمه نشده

دانلود مقاله کدگشای MIMO عظیم با کمک یادگیری عمیق

عنوان فارسی مقاله: شبکه یادگیری عمیق: کدگشای چند خروجی چند ورودی عظیم با کمک یادگیری عمیق
عنوان انگلیسی مقاله: DLNet: Deep learning-aided massive MIMO decoder
مجله/کنفرانس: مجله بین المللی الکترونیک و ارتباطات - International Journal of Electronics and Communications
رشته های تحصیلی مرتبط: مهندسی کامپیوتر
گرایش های تحصیلی مرتبط: مهندسی نرم افزار - هوش مصنوعی
کلمات کلیدی فارسی: کانال همبسته - یادگیری عمیق - شبکه تکراری - چند خروجی عظیم چند ورودی - رمزگشایی چند خروجی چند ورودی - نزول گرادیان پیش بینی شده
کلمات کلیدی انگلیسی: Correlated channel - Deep learning - Iterative network - Massive MIMO - MIMO decoding - Projected gradient descent
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.aeue.2022.154350
لینک سایت مرجع: https://www.sciencedirect.com/science/article/abs/pii/S1434841122002278
نویسندگان: Satish Kumar - Anurag Singh - Rajarshi Mahapatra
دانشگاه: Dr. SPM International Institute of Information Technology-Naya Raipur, India
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2022
ایمپکت فاکتور: 3.877 در سال 2020
شاخص H_index: 65 در سال 2022
شاخص SJR: 0.719 در سال 2020
شناسه ISSN: 1618-0399
شاخص Quartile (چارک): Q2 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e17161
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
نوع رفرنس دهی: vancouver
فهرست مطالب (ترجمه)

چکیده

1. مقدمه

2. مدل سیستم Massive-MIMO

3. معماری رمزگشای DLNet M-MIMO

4. نتایج شبیه سازی

5. نتیجه گیری

اعلامیه منافع رقابتی

تصدیق

منابع

فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Massive-MIMO system model

3. DLNet M-MIMO decoder architecture

4. Simulation results

5. Conclusion

Declaration of Competing Interest

Acknowledgment

References

بخشی از مقاله (ترجمه ماشینی)

چکیده

     طرح‌های رمزگشایی سنتی MIMO پیچیده، غیرعملی هستند و برای سیستم‌های عظیم چند ورودی چند خروجی (M-MIMO) ضعیف عمل می‌کنند. یادگیری عمیق (DL) اخیراً به وجود آمده است تا بسیاری از عملیات پیچیده را در مدت زمان کوتاه‌تری با کارایی بیشتری انجام دهد. این مقاله یک شبکه مبتنی بر یادگیری (DLNet) را برای طراحی رمزگشای M-MIMO پیشنهاد می‌کند. معماری شبکه DLNet با بازگشایی مکرر الگوریتم گرادیان نزول طراحی شده است. رمزگشای DLNet پیشنهادی شامل 15 لایه شبکه عصبی (NN) با برخی پارامترهای قابل آموزش است. این کار رایلی آپلینک و کانال های M-MIMO مرتبط را در نظر گرفت که کاملاً برای گیرنده شناخته شده است. رمزگشای پیشنهادی DLNet با آگاهی از سیگنال های دریافتی و کانال های M-MIMO، پیام های همه کاربران را رمزگشایی می کند. در دیدگاه M-MIMO، DLNet پیشنهادی برای عملکرد نرخ خطای نماد (SER)، پیچیدگی الگوریتم، و نیاز زمان اجرا ارزیابی شده است. شبیه‌سازی‌ها نشان می‌دهند که DLNet پیشنهادی سریع‌تر از دیگر رمزگشاهای موجود همگرا می‌شود و بهتر از سایر طرح‌های رمزگشایی M-MIMO، حداقل ۲ دسی‌بل در SER و حداقل ۱۱ برابر سریع‌تر از خط پایه (OAMP-Net) و ۹ برابر پیچیده‌تر عمل می‌کند.

توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.

بخشی از مقاله (انگلیسی)

Abstract

     Traditional MIMO decoding schemes are complex, impractical, and perform poorly for massive multiple-input multiple-output (M-MIMO) systems. Deep learning (DL) has recently emerged to perform many complex operations more efficiently within a shorter time. This paper proposes a learning-based network (DLNet) to design an M-MIMO decoder. The DLNet network architecture is designed by iteratively unfolding the gradient descent algorithm. The proposed DLNet decoder consists of 15 neural networks (NN) layers with some trainable parameters. This work considered uplink Rayleigh and correlated M-MIMO channels, which are perfectly known to the receiver. With the knowledge of the received signals and the M-MIMO channels, the proposed DLNet decoder decodes the messages of all the users. In the M-MIMO perspective, the proposed DLNet has been evaluated for symbol-error-rate (SER) performance, algorithm complexity, and run-time requirement. The simulations show that the proposed DLNet converges faster than other available decoders and performs better than other M-MIMO decoding schemes, by at least 2 dB in SER and at least 11 times faster than the baseline (OAMP-Net) and nine times less complex.

Introduction

     Massive multiple-input multiple-output (M-MIMO) is one of the primary transmission techniques for fifth-generation (5G) wireless communication systems. M-MIMO shows many advantages over classical MIMO schemes and can achieve all of its merits on a grander scale [1]. It mainly uses a large antenna array at a base station (BS) and a few antennas at user equipment (UE) to increase the data rate, link reliability, and coverage and reduce outage in the wireless systems. Additionally, using a sufficiently large number of antennas at BS and UE, the noise and intracell interference can be averaged out [2]. Conventional MIMO decoders are mainly developed using mathematical and information theory concepts that only capture the approximate behavior of the system. This makes it more challenging to perform end-to-end optimization of the communication system in practice and produces sub-optimal performance. These limitations on conventional MIMO decoders motivate researchers to investigate new M-MIMO decoding techniques that give near-optimal solutions, if not optimal, with less complex hardware implementation while faster processing speed. This paper proposes a Massive MIMO decoder using a deep neural network (DNN) that can satisfy the above criteria.

Conclusion

     This paper proposed a DL-based M-MIMO signal decoder DLNet. We have simulated its SER performance, implementation complexity, and decoding time requirement over frequency flat Rayleigh fading and correlated M-MIMO channels. The proposed DLNet is a 15 layers DNN based on the projected gradient descent-based solution of the ML decoder. The proposed DLNet provides near-optimal SER performance without knowing the SNR level and is computationally inexpensive. The training of DLNet was done on the entire channel distribution, which makes it robust and implementable in a system with changing channel values where the receiver perfectly knows the channel state. After doing single-time training, the proposed DLNet decoder can decode signals accurately over various channels. The data obtained from real-world channels and real hardware could be used to train the DLNet, and thus it can be optimized for specific practical M-MIMO environments. Its iterative layering structure enables a flexible complexity-accuracy trade-off required for many modern communication systems.