دانلود مقاله پیش بینی افسردگی و اضطراب جمعیت چین در طول COVID-19
ترجمه نشده

دانلود مقاله پیش بینی افسردگی و اضطراب جمعیت چین در طول COVID-19

عنوان فارسی مقاله: پیش بینی افسردگی و اضطراب جمعیت چین در طول COVID-19 در داده های ارزیابی روانشناختی توسط XGBoost
عنوان انگلیسی مقاله: Predicting depression and anxiety of Chinese population during COVID-19 in psychological evaluation data by XGBoost
مجله/کنفرانس: مجله اختلالات عاطفی - Journal of Affective Disorders
رشته های تحصیلی مرتبط: روانشناسی - پزشکی
گرایش های تحصیلی مرتبط: روانشناسی بالینی - اپیدمیولوژی
کلمات کلیدی فارسی: یادگیری ماشینی - افسردگی - اضطراب - تاب آوری - حمایت اجتماعی - پاندمی کووید 19
کلمات کلیدی انگلیسی: Machine learning - Depression - Anxiety - Resilience - Social support - COVID-19 pandemic
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jad.2022.11.044
لینک سایت مرجع: https://www.sciencedirect.com/science/article/pii/S0165032722013040
نویسندگان: Zhanxiao Tian - Wei Qu - Yanli Zhao - Xiaolin Zhu - Zhiren Wang - Yunlong Tan - Ronghuan Jiang - Shuping Tan
دانشگاه: Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, China
صفحات مقاله انگلیسی: 9
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2023
ایمپکت فاکتور: 6.163 در سال 2020
شاخص H_index: 205 در سال 2022
شاخص SJR: 1.791 در سال 2020
شناسه ISSN: 0165-0327
شاخص Quartile (چارک): Q1 در سال 2020
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: دارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e17342
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (ترجمه)

چکیده

1. مقدمه

2. روش ها

3. نتایج

4. بحث

منابع مالی

بیانیه مشارکت نویسنده CRediT

تضاد منافع

قدردانی

منابع

فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Methods

3. Results

4. Discussion

Funding

CRediT authorship contribution statement

Conflict of interest

Acknowledgments

References

بخشی از مقاله (ترجمه ماشینی)

چکیده

     زمینه و هدف: با توجه به شروع استرس ناگهانی، کووید-19 تا حد زیادی بر بروز افسردگی و اضطراب تأثیر گذاشته است. با این حال، هنوز چالش‌هایی در شناسایی گروه‌های پرخطر افسردگی و اضطراب در طول COVID-19 وجود دارد. مطالعات نشان داده‌اند که چگونه تاب‌آوری و حمایت اجتماعی می‌توانند به عنوان پیش‌بینی‌کننده‌های موثر افسردگی و اضطراب به کار گرفته شوند. این مطالعه با هدف انتخاب بهترین ترکیب از متغیرها از معیارهای تاب آوری، حمایت اجتماعی و ناگویی هیجانی برای پیش بینی افسردگی و اضطراب انجام شده است.

  روش‌ها: مدل تقویت شیب شدید (XGBoost1) روی مجموعه داده‌ای شامل داده‌های ۲۹۸۴۱ شرکت‌کننده که در طول همه‌گیری کووید-۱۹ جمع‌آوری شده بود، اعمال شد. تجزیه و تحلیل تمایز بر روی گروه‌های شرکت‌کننده با افسردگی (DE2)، اضطراب (AN3)، افسردگی و اضطراب همراه (DA4)، و گروه کنترل سالم (HC5) انجام شد. همه متغیرها با توجه به اهمیت آنها برای طبقه بندی انتخاب شدند. علاوه بر این، تجزیه و تحلیل با ویژگی های انتخاب شده برای تعیین بهترین ترکیب متغیر انجام شد.

یافته‌ها: میانگین دقت به‌دست‌آمده با سه کار طبقه‌بندی، DE در مقابل HC، AN در مقابل HC، و DA در مقابل HC، 0.78، 0.77 و 0.89 بود. علاوه بر این، ترکیب 19 ویژگی انتخاب شده تقریباً عملکرد یکسانی را با تمام 56 متغیر نشان داد (دقت = 0.75، 0.75، و 0.86).

نتیجه‌گیری: تاب‌آوری، حمایت اجتماعی و برخی از داده‌های جمعیت‌شناختی می‌توانند به طور دقیق DE، AN و DA را از HC متمایز کنند. نتایج را می توان برای اطلاع رسانی شیوه های غربالگری افسردگی و اضطراب مورد استفاده قرار داد. علاوه بر این، عملکرد مدل یک مقیاس محدود شامل تنها 19 ویژگی نشان می دهد که استفاده از یک مقیاس ساده امکان پذیر است.

توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.

بخشی از مقاله (انگلیسی)

Abstract

Background

     Due to the onset of sudden stress, COVID-19 has greatly impacted the incidence of depression and anxiety. However, challenges still exist in identifying high-risk groups for depression and anxiety during COVID-19. Studies have identified how resilience and social support can be employed as effective predictors of depression and anxiety. This study aims to select the best combination of variables from measures of resilience, social support, and alexithymia for predicting depression and anxiety.

Methods

     The eXtreme Gradient Boosting (XGBoost1) model was applied to a dataset including data on 29,841 participants that was collected during the COVID-19 pandemic. Discriminant analyses on groups of participants with depression (DE2), anxiety (AN3), comorbid depression and anxiety (DA4), and healthy controls (HC5), were performed. All variables were selected according to their importance for classification. Further, analyses were performed with selected features to determine the best variable combination.

Results

     The mean accuracies achieved by three classification tasks, DE vs HC, AN vs HC, and DA vs HC, were 0.78, 0.77, and 0.89. Further, the combination of 19 selected features almost exhibited the same performance as all 56 variables (accuracies = 0.75, 0.75, and 0.86).

Conclusions

     Resilience, social support, and some demographic data can accurately distinguish DE, AN, and DA from HC. The results can be used to inform screening practices for depression and anxiety. Additionally, the model performance of a limited scale including only 19 features indicates that using a simplified scale is feasible.

Introduction

     Since its outbreak, COVID-19 rapidly became a pandemic (Wang et al., 2020a). Several factors including demographic characteristics (e.g., gender, occupation, education level, health status) and those related to COVID-19 (e.g., physical symptoms, contact history, worry level, and preventive measures) significantly impacted people's mental health, which, in some cases, further developed into psychiatric disorders (Banerjee and Rai, 2020; Minihan et al., 2020; Wang et al., 2020c; de Figueiredo et al., 2021), such as depression, anxiety, insomnia, and post-traumatic stress symptoms (Bao et al., 2020; Huang and Zhao, 2020; Luo et al., 2020; Shader, 2020; Li et al., 2022). Typically, diagnoses for depression and anxiety depend on the clinical evaluation of symptoms, as well as scales, such as the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety Disorder-7 (GAD-7). However, medical resource shortages during the COVID-19 pandemic made it increasingly challenging to identify these psychiatric disorders and intervene (Emanuel et al., 2020). This necessitated the development of psychiatric screening tools with minimal demand on the already limited resources of clinical staff. Although the aforementioned measures are readily accessible, they only offer short-term evaluations based on patients' subjective experiences, which may only detect the recent abnormal (last two weeks) psychological fluctuations of such patients (Garabiles et al., 2020). Therefore, it is difficult for PHQ-9 and GAD-7 to effectively describe the risk of depression or anxiety. We hope to use some indicators that can describe the risk of depression or anxiety to predict depression and anxiety, so as to quantify the probability of depression and anxiety. In addition, because there are many risk factors related to depression and anxiety, it is difficult for participants to complete if all the factors are included. It may ultimately affect the prediction results. Thus, we hope to find some stable key variables to simplify the whole process without affecting the prediction effect.

Results

     3.1. Descriptive and data analysis of demographic characteristics, COVID-19 related factors, current health status, and psychological factors

     The results of the descriptive analysis of the 29,841 participants (male: 10,592, female: 19,249) is presented in Table 1. The demographic data reveals that older, higher education level and divorced women are more likely to suffer from depression and anxiety (p<0.01). As for the factors related to the COVID-19 epidemic, having patients with infection (including family members, friends or colleagues) around them, having COVID-19 contact history or being infected are tend to depression and anxiety (p<0.01). In terms of general health status, the worse the general health status, the more prone to depression and anxiety (p<0.01). In psychological assessment, social support and resilience are protective factors of depression and anxiety (p<0.01). The higher the score of SSQ or CDRISC, the less likely to suffer from depression and anxiety. The results of the descriptive analysis showed all factors are related to depression and anxiety. However, it is hard to explain the impact of these variables on depression and anxiety, so it is necessary to further quantify the predictive effect of these variables on depression and anxiety with machine learning models.