خلاصه
معرفی
چارچوب مفهومی
روش شناسی
نتایج
بحث ها
نتیجه گیری
اعلامیه منافع رقابتی
منابع
Abstract
Introduction
Conceptual framework
Methodology
Results
Discussions
Conclusions
Declaration of Competing Interest
References
چکیده
این مطالعه بهترین شیوه ها را برای بهینه سازی نام تجاری دیجیتال شرکتی با در نظر گرفتن کلان داده های رفتاری مشتریان و تجزیه و تحلیل وب بررسی می کند. در مرحله اول مطالعه، کلان دادهها رضایت مشتریان با کمک ابزار حذف وب از TripAdvisor برای 189 هتل در استان هوبی استخراج شده است و دادههای رفتاری از وبسایتهای هتلداری استان هوبی با کمک تجزیه و تحلیل وب جمعآوری شده است. پلتفرم هایی برای 5.7 میلیون بازدید کننده وب سایت در 18 ماه گذشته. در مرحله دوم این پژوهش، دادهها از طریق تحلیل آماری توصیفی، همبستگی و تحلیل رگرسیون مورد تجزیه و تحلیل قرار گرفتند. سپس یک نقشه شناختی فازی برای ارائه همبستگی بین پارامترها ایجاد شده و دو سناریو بهینه سازی برای نام تجاری دیجیتال و رضایت مشتری ایجاد شده است. در نهایت، یک مدل مبتنی بر عامل به منظور شبیه سازی رفتار مشتریان در وب سایت شرکت و تریپ ادوایزر ایجاد شده است. نتایج نشان داد که هتلهای استان هوبی به منظور دستیابی به مزیت رقابتی و بهبود نام تجاری دیجیتال خود، نیاز به سرمایهگذاری کمتری در تبلیغات رسانههای اجتماعی نسبت به تبلیغات موتورهای جستجو دارند. علاوه بر این، هتلها باید وبسایتهای خود را با محتوای جذابتر توسعه دهند تا مشتری را برای مدت زمان بیشتری در وبسایت شرکت نگه دارند تا در مقایسه با وبسایتهای مراقبتهای بهداشتی و کتابخانهها، رضایت مشتری را بهینه کنند.
Abstract
This study examines the best practices for the optimization of the corporate digital brand name by taking into consideration customers’ behavioral big data and web analytics. In the first stage of the study, customers’ satisfaction big data have been extracted with the assistance of a web scrapping tool from TripAdvisor for 189 hotels in Hubei province, and behavioral data from Hubei province hospitality websites have been gathered with the assistance of web analytics platforms for 5.7 million website visitors for the last 18 months. In the second stage of the research, those data have been statistically analyzed including descriptive, correlation, and regression analysis. Then, a fuzzy cognitive map has been created to present the intercorrelation between the parameters and two optimization scenarios have been developed for digital brand name and customer satisfaction. Finally, an Agent-based model has been created in order to simulate the customers’ behavior in the corporate website and TripAdvisor. The results indicated that hotels in Hubei province need to invest less in social media advertisements than search engine advertisements in order to achieve a competitive advantage and improve their digital brand name. Additionally, hotels need to develop their websites with more engaging content to maintain the customer on the corporate website for more time in order to optimize customer satisfaction in contrast to healthcare and libraries websites.
Introduction
The COVID-19 pandemic forced all destinations to introduce travel restrictions, with airplanes on the ground and hotels, restaurants and travel agencies closed, making the Hospitality, Travel and Tourism (HTT) sector one of the worst affected with tremendous economic losses (Obembe et al., 2021). The World Tourism Organization has released the 11th and last one report on travel restrictions on 26th November 2021 (UNWTO, 2021), stating that 98% of all destinations have some kind of travel restrictions in place. As of 2 November 2022, where there have been 628.035.553 confirmed cases of COVID-19 globally (WHO, 2022), most countries have lifted their travel bans. This new situation, while it offers a pandemic relief, it simultaneously provokes the public opinion to be split over this policy (Stoeckel et al., 2022). Given the great number of confirmed cases, this dichotomy raises concerns on how risk perception contributes to the adoption of new patterns of behavior after severe outbreaks familiarity (Sakas et al. 2021).
Zajenkowski et al., (2020) state that during novel crisis, such as the Covid-19 pandemic, people perceptions are more likely to be influenced by situational cues, rather than personality traits. Although the research is geographically limited in one country, it is an important outcome which further supports the research of Moya et al., (2020) regarding customers’ extensive behavioral change as a consequence of crisis situations. As the public opinion has changed throughout the stages of the pandemic (Mahdikhani, 2022), so does the digital behavior of online users (Sakas et al., 2022a), pushing companies over the technology tipping point (Nasir et al., 2022). Especially for the HTT ecosystem, tourist behavior has been changed due to travel and mobility limitations, psychological and economic factors (Marques Santos et al., 2020). Cognitive, personality, and affective factors would predict travel behavior and travel preferences during the COVID-19 pandemic (Morar et al., 2021).
Conclusions
The purpose of the current paper is to provide evidence on the impact of customers’ online behavior on corporate digital branding and offer guidelines on how companies could optimize customers’ satisfaction by leveraging the dynamic of big data analytics. Gathering and analyzing the digital behavior and journey of million users can provide fruitful information and valid insights on businesses within the HTT sector as the literature suggests (Buhalis & Volchek, 2021; Lv et al., 2022). However, there is little empirical evidence on how marketing managers could benefit from the information overload (Saxena & Lamest, 2018). The authors of the present research attempt to analyze the data collected from 189 hotels and 5,7 million visitors, generated from websites and social platforms, and interpret the results into actual guidelines so as to develop an effective brand communication strategy.