دانلود مقاله اینفلوئنسر مجازی ایجاد شده با هوش مصنوعی
ترجمه نشده

دانلود مقاله اینفلوئنسر مجازی ایجاد شده با هوش مصنوعی

عنوان فارسی مقاله: اینفلوئنسر مجازی ایجاد شده با هوش مصنوعی: بررسی تاثیرات نمایش احساسی بر مشارکت کابر
عنوان انگلیسی مقاله: Artificial intelligence-generated virtual influencer: Examining the effects of emotional display on user engagement
مجله/کنفرانس: Journal of Retailing and Consumer Services - مجله خرده فروشی و خدمات مصرف کننده
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: بازاریابی
کلمات کلیدی فارسی: تصویر سازی کامپیوتری، واحد کنش صورت، رسانه های اجتماعی
کلمات کلیدی انگلیسی: Computer-generated imagery, Facial action unit, Social media
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jretconser.2023.103560
لینک سایت مرجع: https://www.sciencedirect.com/science/article/pii/S0969698923003119
نویسندگان: Joanne Yu - Astrid Dickinger - Kevin Kam Fung So - Roman Egger
دانشگاه: Modul University Vienna, Austria
صفحات مقاله انگلیسی: 10
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2023
ایمپکت فاکتور: 12.405 در سال 2022
شاخص H_index: 120 در سال 2023
شاخص SJR: 2.543 در سال 2022
شناسه ISSN: 0969-6989
شاخص Quartile (چارک): Q1 در سال 2022
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
آیا این مقاله فرضیه دارد: ندارد
کد محصول: e17597
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (ترجمه)

خلاصه
1. معرفی
2. بررسی ادبیات
3. روش شناسی
4. نتایج
5. بحث
6. نتیجه گیری
اعلامیه منافع رقابتی
سپاسگزاریها
در دسترس بودن داده ها
منابع

فهرست مطالب (انگلیسی)

Abstract
1. Introduction
2. Literature review
3. Methodology
4. Results
5. Discussion
6. Conclusion
Declaration of Competing interest
Acknowledgements
Data availability
References

بخشی از مقاله (ترجمه ماشینی)

چکیده
این مطالعه با تمرکز بر کاربرد هوش مصنوعی، تأثیر نمایش احساسی بر تعامل کاربر با تصاویر اینفلوئنسر تولید شده توسط رایانه را از طریق چارچوب رایانه‌های بازیگران اجتماعی (CASA) بررسی می‌کند. احساسات را به حرکات ماهیچه ای منفرد (به عنوان مثال، واحدهای کنش صورت) تجزیه می کند. با استفاده از تشخیص چهره بر اساس 1028 تصویر به اشتراک گذاشته شده توسط لیل میکولا، یافته ها اهمیت شادی، غم، انزجار و شگفتی را در ایجاد مشارکت کاربر در هنگام تبلیغ محصولات متنوع با محتوای بصری جذاب نشان می دهد. این یافته‌ها اهمیت متعادل کردن شدت حرکت عضلات را برای ساده‌سازی تعامل بین فناوری، رفتار انسانی و ارتباطات دیجیتالی نشان می‌دهد.

بخشی از مقاله (انگلیسی)

Abstract

Focusing on the application of artificial intelligence, this study investigates the impact of emotional display on user engagement with computer-generated imagery influencers through the lens of the computers are social actors (CASA) framework. It breaks down emotions into individual muscle movements (i.e., facial action units). By using facial recognition based on 1,028 pictures shared by Lil Miquela, the findings disclose the significance of happiness, sadness, disgust, and surprise in triggering user engagement when promoting diverse products with visually captivating content. The findings highlight the importance of balancing the intensity of muscle movement to streamline the interplay between technology, human behaviour, and digital communication.

 

Introduction

The rapid advancement of artificial intelligence (AI) has enabled widespread digital transformation and given rise to avatars, content-generation AI, and computer-generated universes that promote unparalleled levels of social connectivity (Ahn et al., 2022; Miao et al., 2022). Content-generation AI systems such as ChatGPT and DALL·E2 have the capability to generate textual and pictorial content, allowing for the creation of immersive and engaging content across various industries. This revolutionization enables more immersive interactions with consumers in various industries, such as entertainment (Kim and Yoo, 2021) and retailing (Chuah and Yu, 2021). Through far-reaching and impactful non-human digital communications that simulate a more realistic experience, this transformative technology results in enhanced customer engagement (Rahman et al., 2023). Although anthropomorphic characters have been met with criticism over uneasiness and eeriness resulting from the uncanny valley effect (Lou et al., 2022; Mori, 1970), the increasing sophistication of computer graphics has begun to shift public attitudes towards humanlike characters, demonstrating that viewers may not always respond negatively. For instance, computer-generated imagery (CGI) influencers, such as Lil Miquela and Imma, are a remarkable innovation that leverages the power of AI to create digital personas that look and behave like real humans, thus pushing the boundaries of what is possible in the realm of virtual media (Drenten and Brooks, 2020).

 

In addition to their curated online presence, CGI influencers have the potential to express emotions in a way that avatars cannot. The use of animation and rendering techniques allows CGI influencers to mimic the subtleties of human expressions (Ahn et al., 2022). CGI influencers can consistently convey a broad spectrum of emotions, which is a feat that may prove challenging for their human counterparts to maintain. Adding on to the six basic emotions (i.e., happiness, sadness, surprise, fear, anger, and disgust) identified by Ekman (1992), a more sophisticated approach for assessing facial expressions is the examination of facial muscle movements through action units (AUs) (Ngan and Yu, 2019). Prior research has demonstrated the utility of AUs in enabling an objective deconstruction of potential facial muscle activations that lead to specific emotional expressions (Schoner-Schatz et al., 2021), such as in the context of service encounters (Ngan and Yu, 2019). This offers a more nuanced and detailed understanding of the emotions being exhibited by computer-generated imagery influencers and their impact on user engagement.

 

Conclusion

6.1. Theoretical contribution
By exploring how CGI influencers can effectively communicate emotions to their audience, this research provides valuable insights into the interplay between technology, human behaviour, and marketing strategies. As CGI influencers blur the line between reality and fiction, this study reinforces the theoretical lens of the CASA paradigm (Ahn et al., 2022; Nass et al., 1994) that is pivotal to the connections between the audience and media figures (Chen, 2016). Different from the traditional CASA paradigm that concentrates on the connection between humans and agents (Arsenyan and Mirowska, 2021; Gambino et al., 2020), the underpinning logic of CASA allows mutual communication at an emotional level for CGI influencers and the public (Mrad et al., 2022), laying a solid foundation for sentimental and experiential communication of virtual agents. By analysing their facial expressions, this study reinforces the assumption that optimising emotional experiences in computer-mediated communication serves as a fundamental factor in influencing viewers’ reactions in marketing (Chuah and Yu, 2021; Grundner and Neuhofer, 2021).

 

Besides the commonly studied positive emotions (e.g., happiness) (Baek et al., 2022; Campos et al., 2013), this research uncovers the effectiveness of specific emotions such as surprise, sadness, and disgust in distinct situational contexts. Specifically, it contributes to the understanding of AI surprise by examining the nuanced variations in different intensities of AUs (Chuah and Yu, 2021). Additionally, it reveals insights into less commonly observed expressions on social media, such as sadness and disgust. By analysing facial muscle movements, the research delves into the subtle changes within specific muscles that are associated with each emotion. Besides focusing solely on the overall intensity of emotions (Bharadwaj et al., 2022; Lin et al., 2021), this approach provides a deeper understanding of the intricacies involved in emotional expression.

بدون دیدگاه