رگرسیون غیر پارامتری در تحقیقات هتلداری و گردشگری
ترجمه نشده

رگرسیون غیر پارامتری در تحقیقات هتلداری و گردشگری

عنوان فارسی مقاله: رگرسیون غیر پارامتری برای آزمایش فرضیه در تحقیقات هتلداری و گردشگری
عنوان انگلیسی مقاله: Non-parametric regression for hypothesis testing in hospitality and tourism research
مجله/کنفرانس: مجله بین المللی مدیریت هتلداری - International Journal of Hospitality Management
رشته های تحصیلی مرتبط: گردشگری و توریسم
گرایش های تحصیلی مرتبط: مدیریت گردشگری
کلمات کلیدی فارسی: رگرسیون غیر پارامتری، Bayesian ،GPP
کلمات کلیدی انگلیسی: Non-Parametric Regression، Bayesian، GPP
نوع نگارش مقاله: مقاله کوتاه (Short Communication)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.ijhm.2018.04.002
دانشگاه: Isenberg School of Management, University of Massachusetts-Amherst, 90 Campus Center Way, 209A Flint Lab, Amherst, MA, 01003, United States
صفحات مقاله انگلیسی: 5
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 3/602 در سال 2017
شاخص H_index: 82 در سال 2019
شاخص SJR: 2/027 در سال 2017
شناسه ISSN: 0278-4319
شاخص Quartile (چارک): Q1 در سال 2017
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
کد محصول: E10913
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Bayesian nonparametric regression through Gaussian process prior

3- Application

4- Results

5- Concluding remarks

References

بخشی از مقاله (انگلیسی)

Abstract

The goal of this paper is to promote the use of Non-Parametric Regression (NPR) for hypothesis testing in hospitality and tourism research. In contrast to linear regression models, NPR frees researchers from the need to impose a priori specification on functional forms, thus allowing more flexibility and less vulnerability to misspecification problems. Importantly, we discuss in this paper a Bayesian approach to NPR using a Gaussian Process Prior (GPP). We illustrate the advantages of this method using an interesting application on internationalization and hotel performance. Specifically, we show how in contrast to linear regression, NPR decreases the risk of making incorrect hypothesis statements by revealing the true and full relationship between the variables of interest.

Introduction

Despite the increased popularity of non-parametric regression (NPR), its use in the tourism and hospitality literature remains very limited. We aim in this note to highlight the advantages of NPR, and illustrate how it can be used to provide a more accurate reflection on the true relationship between a set of variables. We show through an example that hospitality researchers might be missing some important input for hypothesis testing when estimating the traditional linear regression model. NPR, like linear regression, estimates mean outcomes for a given set of covariates. However, unlike linear regression, NPR is not subject to misspecification error arising from potentially wrong functional forms as it does not impose a priori a functional form on the regression model (Müller, 2012; Mammen et al., 2012). The linear model (y = β0 + βx + u) is generally assumed for convenience, and not because we truly believe that the model is linear in reality. Researchers in the field often model nonlinearities using extensions of the linear model, for example, y = β0 + β1x + β2x2 + u. It is clear, however, that this model accounts only for limited types of nonlinearity of U or inverted U shape, and cannot capture more complicated patterns in the data. When more than one regressor is available, nonlinearities are often modeled using interactions: y = β0 + β1x + β2z + β3xz + u. The interpretation is that the effect of x on y depends on z: = + ∂ ∂ β β z E y x ( ) 1 3 . This is, of course, a deviation from the simple linear model where the main assumption is that the effect of x on y is constant across all values of x or other explanatory variables. However, the effect of x on y depends on z in a linear way, an assumption that may or may not hold in practice.