گسترش نفوذ در شبکه های اجتماعی برای بازاریابی ویروسی
ترجمه نشده

گسترش نفوذ در شبکه های اجتماعی برای بازاریابی ویروسی

عنوان فارسی مقاله: مدل سازی و به حداکثر رساندن گسترش نفوذ در شبکه های اجتماعی برای بازاریابی ویروسی
عنوان انگلیسی مقاله: Modeling and maximizing influence diffusion in social networks for viral marketing
مجله/کنفرانس: علوم شبکه کاربردی - Applied Network Science
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: بازاریابی، مدیریت فناوری اطلاعات، مدیریت بازرگانی
کلمات کلیدی فارسی: گسترش نفوذ، به حداکثر رساندن نفوذ، شبکه های اجتماعی، بازاریابی ویروسی
کلمات کلیدی انگلیسی: Influence diffusion، Influence maximization، Social network، Viral marketing
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - DOAJ
شناسه دیجیتال (DOI): https://doi.org/10.1007/s41109-018-0062-7
دانشگاه: Department of Management Sciences, University of Iowa, 21 E Market St, Iowa City IA 52242, USA
صفحات مقاله انگلیسی: 26
ناشر: اسپرینگر - Springer
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2018
شناسه ISSN: 2364-8228
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E12612
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

Introduction

Related research

Methodology

Experiments

Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Modeling influence diffusion in social networks is an important challenge. We investigate influence-diffusion modeling and maximization in the setting of viral marketing, in which a node’s influence is measured by the number of nodes it can activate to adopt a new technology or purchase a new product. One of the fundamental problems in viral marketing is to find a small set of initial adopters who can trigger the most further adoptions through word-of-mouth-based influence propagation in the network. We propose a novel multiple-path asynchronous threshold (MAT) model, in which we quantify influence and track its diffusion and aggregation. Our MAT model captures not only direct influence from neighboring influencers but also indirect influence passed along by messengers. Moreover, our MAT framework models influence attenuation along diffusion paths, temporal influence decay, and individual diffusion dynamics. Our work is an important step toward a more realistic diffusion model. Further, we develop an effective and efficient heuristic to tackle the influence-maximization problem. Our experiments on four real-life networks demonstrate its excellent performance in terms of both influence spread and time efficiency. Our work provides preliminary but significant insights and implications for diffusion research and marketing practice.

Introduction

People live in various social networks, and share information and ideas with friends in the form of word-of-mouth (WOM) communication. New technologies and various social media rapidly penetrate into every aspect of our daily life, and provide us new channels and great convenience to exchange information and express opinions. They disseminate massive volumes of information over different social media, and spread influence to each other. As social media becomes prevalent, its influence on business, politics and society becomes evident and significant. How new innovations, behaviors, and diseases spread through social networks has a long history of study in social sciences. Research in this area has exploded and drawn considerable attention from many disciplines over the last decade. Many models of information and influence diffusion have been proposed for a wide variety of applications, such as viral marketing (Kempe et al. 2003; Bhagat et al. 2012), cascading behavior and prediction (Leskovec et al. 2007; Cheng et al. 2014), information spreading (Morales et al. 2014), outbreak detection (Leskovec et al. 2007), etc.