Abstract
Introduction
Related research
Methodology
Experiments
Conclusion
References
Abstract
Modeling influence diffusion in social networks is an important challenge. We investigate influence-diffusion modeling and maximization in the setting of viral marketing, in which a node’s influence is measured by the number of nodes it can activate to adopt a new technology or purchase a new product. One of the fundamental problems in viral marketing is to find a small set of initial adopters who can trigger the most further adoptions through word-of-mouth-based influence propagation in the network. We propose a novel multiple-path asynchronous threshold (MAT) model, in which we quantify influence and track its diffusion and aggregation. Our MAT model captures not only direct influence from neighboring influencers but also indirect influence passed along by messengers. Moreover, our MAT framework models influence attenuation along diffusion paths, temporal influence decay, and individual diffusion dynamics. Our work is an important step toward a more realistic diffusion model. Further, we develop an effective and efficient heuristic to tackle the influence-maximization problem. Our experiments on four real-life networks demonstrate its excellent performance in terms of both influence spread and time efficiency. Our work provides preliminary but significant insights and implications for diffusion research and marketing practice.
Introduction
People live in various social networks, and share information and ideas with friends in the form of word-of-mouth (WOM) communication. New technologies and various social media rapidly penetrate into every aspect of our daily life, and provide us new channels and great convenience to exchange information and express opinions. They disseminate massive volumes of information over different social media, and spread influence to each other. As social media becomes prevalent, its influence on business, politics and society becomes evident and significant. How new innovations, behaviors, and diseases spread through social networks has a long history of study in social sciences. Research in this area has exploded and drawn considerable attention from many disciplines over the last decade. Many models of information and influence diffusion have been proposed for a wide variety of applications, such as viral marketing (Kempe et al. 2003; Bhagat et al. 2012), cascading behavior and prediction (Leskovec et al. 2007; Cheng et al. 2014), information spreading (Morales et al. 2014), outbreak detection (Leskovec et al. 2007), etc.