تجزیه و تحلیل تصمیمات چند معیاره
ترجمه نشده

تجزیه و تحلیل تصمیمات چند معیاره

عنوان فارسی مقاله: رویکرد تجزیه و تحلیل تصمیمات چند معیاره مبتنی بر خاکستری: پرداختن به عدم اطمینان در مشکلات پیچیده تصمیم گیری
عنوان انگلیسی مقاله: Grey-based Multi-Criteria Decision Analysis approach: Addressing uncertainty at complex decision problems
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: سیستم های اطلاعاتی پیشرفته
کلمات کلیدی فارسی: تجزیه و تحلیل تصمیم گیری چند معیاره، نظریه سیستم های خاکستری، فرآیند تحلیلی شبکه، روش سازماندهی رتبه بندی اولویت برای ارزیابی غنی سازی II، سیستم های پشتیبانی از تصمیم
کلمات کلیدی انگلیسی: MCDA، Uncertainty، Grey systems theory، ANP، PROMETHEE II، Decision support systems
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2019.05.031
دانشگاه: Concordia Institute for Information Systems Eng., Concordia University, Montreal, Quebec, Canada
صفحات مقاله انگلیسی: 14
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13357
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Research background

3. Grey-based MCDA methodology (G-ANP-PROMETHEE II)

4. Case illustration of strategic decision making in FEI for a Small to Medium-sized Enterprise (SME) within the Canadian quaternary sector

5. Comparative analysis

6. Conclusion

Acknowledgement

Appendix A.

References

بخشی از مقاله (انگلیسی)

Abstract

In complex systems, decision makers encounter uncertainty from various sources. In this paper, a new hybrid grey-based Multi-Criteria Decision Analysis (MCDA) approach is proposed to optimize the evaluation space in decision problems that are subject to subjective and objective uncertainty over different types of interrelated criteria. The four-phase methodology begins with the formulation of a decision problem through the analysis of the system of concern, its functionality, and substantial connections among evaluation criteria. The second phase involves the development of grey linguistic scales to handle the uncertainty of human judgements. The third phase integrates the grey linguistic scale, concepts of grey systems theory, and principles of Analytical Network Process to prioritize criteria. Finally, to evaluate and rank alternatives in such a complex setting, Preference Ranking Organization METHod for Enrichment Evaluation II is extended using a grey linguistic scale to articulate subjective uncertainty, grey numbers to account for objective uncertainty, grey operating rules to normalize evaluation measures, and the proposed approach of prioritizing evaluation criteria to establish relative preferences. To demonstrate the viability of the methodology, a case study is presented, in which a strategic decision is made within the context of innovation. To validate the methodology, a comparative analysis is provided.

Introduction

Decision makers usually encounter large amount of complex information. The complexity of decision problems increases when different evaluation criteria of different nature (e.g., qualitative and quantitative), different scales, and different values (e.g., continuous, discrete, and linguistic) are involved. Multi-Criteria Decision Analysis (MCDA) is therefore considered one of the most fruitful sub-disciplines of operations research. The main role of MCDA is to aid Decision Makers (DMs) in establishing a coherent picture about complex decision problems (Kurka and Blackwood, 2013). However, in many cases uncertainty-related aspects (i.e., uncertainty associated with limited objective information and uncertainty associated with subjective expert knowledge) are present. This adds to the complexity of analyzing the decision problems as the conventional MCDA approaches presume the availability of precise information (Kuang et al., 2015; Li et al., 2007). Various methods have been proposed to deal with different types of uncertainty-related aspects. Grey systems theory is recommended for decision problems with a relatively small amount of data (i.e., small samples) and poor information, which cannot be described by a probability distribution (Li et al., 2012; Li and Yuan, 2017; Liu and Lin, 2006). Accordingly, different researchers, which are presented in the next section, have considered the grey systems theory to address uncertainty in decision problems. The existing approaches assumed that DMs are able to assign the weights of the evaluation criteria precisely, did not consider the interrelationships among evaluation criteria, or did not consider the relations among evaluation criteria of different clusters, hence a better method is needed to address the existing research gaps.