شناسایی زودهنگام ثبت اختراعات
ترجمه نشده

شناسایی زودهنگام ثبت اختراعات

عنوان فارسی مقاله: شناسایی زودهنگام ثبت اختراعات مهم: طراحی و اعتبار سنجی معیارهای شبکه استناد
عنوان انگلیسی مقاله: Early identification of important patents: Design and validation of citation network metrics
مجله/کنفرانس: پیش بینی فناورانه و تغییرات اجتماعی – Technological Forecasting and Social Change
رشته های تحصیلی مرتبط: مدیریت
گرایش های تحصیلی مرتبط: مدیریت نوآوری و فناوری
کلمات کلیدی فارسی: تجزیه و تحلیل ثبت اختراع، شبکه های استناد، ثبت اختراعات مهم، پیش بینی فناورانه، رتبه بندی صفحات
کلمات کلیدی انگلیسی: Patent analysis، Citation networks، Significant patents، Technological forecasting، PageRank
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.techfore.2018.01.036
دانشگاه: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
صفحات مقاله انگلیسی: 11
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2019
ایمپکت فاکتور: 4.852 در سال 2018
شاخص H_index: 93 در سال 2019
شاخص SJR: 1.422 در سال 2018
شناسه ISSN: 0040-1625
شاخص Quartile (چارک): Q1 در سال 2018
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: خیر
آیا این مقاله مدل مفهومی دارد: ندارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E13392
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1. Introduction

2. Related work

3. Data

4. Methods

5. Results

6. A comparison of the APS papers' and the US patents' citation network dynamics

7. Conclusions

Acknowledgments

References

بخشی از مقاله (انگلیسی)

Abstract

One of the most challenging problems in technological forecasting is to identify as early as possible those technologies that have the potential to lead to radical changes in our society. In this paper, we use the US patent citation network (1926–۲۰۱۰) to test our ability to early identify a list of expert-selected historically significant patents through citation network analysis. We show that in order to effectively uncover these patents shortly after they are issued, we need to go beyond raw citation counts and take into account both the citation network topology and temporal information. In particular, an age-normalized measure of patent centrality, called rescaled PageRank, allows us to identify the significant patents earlier than citation count and PageRank score. In addition, we find that while high-impact patents tend to rely on other high-impact patents in a similar way as scientific papers, the patents’ citation dynamics is significantly slower than that of papers, which makes the early identification of significant patents more challenging than that of significant papers. In the context of technology management, our rescaled metrics can be useful to early detect recent trends in technical improvement, which is of fundamental interest for companies and investors.

Introduction

While many inventions are granted a patent, only a small fraction of them represent “important” technological advances or will have a significant impact on the market. As a result, a key problem in technological forecasting is to detect which patents are important as early as possible. The literature has designed various indicators of patent importance based on patent data analysis, and it has been found quite consistently (see Section 2) that at least on average, important patents tend to receive more citations. However, this relationship is typically noisy, which suggests that more sophisticated metrics could outperform simple citation count in identifying important patents. Importantly, it takes time for a patent to accumulate citations, which implies that simply counting the number of citations received by a patent may be effective to uncover old important patents, but not to detect important patents shortly after they are granted. In this paper, we propose a network-based metric that identifies important patents better and earlier than citation count. Our metric, time-rescaled PageRank, was introduced by Mariani et al. (2016) to identify expert-selected important papers in physics. It is built on Google’s PageRank algorithm (Brin and Page, 1998) by requiring that node score is not biased by node age. This metric is computationally efficient and thus can be applied on very large datasets (Vaccario et al., 2017). Here we validate this metric on the US patent citation network (1926–۲۰۱۰), by evaluating its ability to detect the expert-selected “important” patents from Strumsky and Lobo (2015). We find that Google’s PageRank outperforms raw citation count in identifying the important patents, which supports the idea that important patents tend to be cited by other important patents.