غلبه truthtelling و ساختار شبکه تعادل نش
ترجمه نشده

غلبه truthtelling و ساختار شبکه تعادل نش

عنوان فارسی مقاله: غلبه truthtelling و ساختار شبکه تعادل نش
عنوان انگلیسی مقاله: Dominance of truthtelling and the lattice structure of Nash equilibria
مجله/کنفرانس: مجله تئوری اقتصادی - Journal Of Economic Theory
رشته های تحصیلی مرتبط: اقتصاد، علوم اجتماعی
گرایش های تحصیلی مرتبط: اقتصاد نظری
کلمات کلیدی فارسی: قوانین تخصیص متوالی، بازی ضداستراتژی، Truthtelling، شبکه، غلبه پارتو
کلمات کلیدی انگلیسی: Sequential allotment rules، Strategy-proofness، Truthtelling، Lattice، Pareto dominance
نوع نگارش مقاله: مقاله پژوهشی (Research Article)
نمایه: Scopus - Master Journals List - JCR
شناسه دیجیتال (DOI): https://doi.org/10.1016/j.jet.2019.104952
دانشگاه: Division of Social Science, New York University Abu Dhabi, United Arab Emirates
صفحات مقاله انگلیسی: 30
ناشر: الزویر - Elsevier
نوع ارائه مقاله: ژورنال
نوع مقاله: ISI
سال انتشار مقاله: 2020
ایمپکت فاکتور: 1/407 در سال 2019
شاخص H_index: 88 در سال 2020
شاخص SJR: 3/467 در سال 2019
شناسه ISSN: 0022-0531
شاخص Quartile (چارک): Q1 در سال 2019
فرمت مقاله انگلیسی: PDF
وضعیت ترجمه: ترجمه نشده است
قیمت مقاله انگلیسی: رایگان
آیا این مقاله بیس است: بله
آیا این مقاله مدل مفهومی دارد: دارد
آیا این مقاله پرسشنامه دارد: ندارد
آیا این مقاله متغیر دارد: ندارد
کد محصول: E14425
رفرنس: دارای رفرنس در داخل متن و انتهای مقاله
فهرست مطالب (انگلیسی)

Abstract

1- Introduction

2- Model and definitions

3- Lattice structure of Nash equilibrium allocations

4- Discussion: robustness checks and extensions

5- Conclusion

References

بخشی از مقاله (انگلیسی)

Abstract

Truthtelling is often viewed as focal in the direct mechanisms associated with strategy-proof decision rules. Yet many direct mechanisms also admit Nash equilibria whose outcomes differ from the one under truthtelling. We study a model that has been widely discussed in the mechanism design literature (Sprumont, 1991) and whose strategy-proof and efficient rules typically suffer from the aforementioned deficit. We show that when a rule in this class satisfies the mild additional requirement of replacement monotonicity, the set of Nash equilibrium allocations of its preference revelation game is a complete lattice with respect to the order of Pareto dominance. Furthermore, the supremum of the lattice is the one obtained under truthtelling. In other words, truthtelling Pareto dominates all other Nash equilibria. For the rich subclass of weighted uniform rules, the Nash equilibrium allocations are, in addition, strictly Pareto ranked. We discuss the tightness of the result and some possible extensions.

Introduction

In the mechanism design literature, the single-peaked preference domain has played a central role. Most importantly, it paved a way out of the many impossibility results on the design of prior-free mechanisms. The celebrated Gibbard and Satterthwaite theorem (see Gibbard (1973) and Satterthwaite (1975)) showed the impossibility of designing efficient and strategy-proof rules that would escape the dictatorship predicament under arbitrary preferences. In contrast, within the confine of the single-peaked domain, possibility results emerge. In a pathbreaking paper, Moulin (1980) characterizes the class of generalized median voting rules when the feasible set is made of all points on a line. On the private goods front, Sprumont (1991) studies the problem of allocating a divisible and nondisposable good.1 Sprumont (1991) characterizes a remarkable rule: the uniform rule which is uniquely characterized down by efficiency, strategy-proofness and a fairness requirement. The Sprumont model has received a great deal of attention in the mechanism design literature, from alternative characterizations of the uniform rule (see e.g. Ching (1994), Thomson (1994a,b, 1995, 1997)), to the exploration of different families of rules (Barberà et al. (1997), Moulin (1999)), or the extensions of the model and the preference domain (see e.g. Adachi (2010), Bochet et al. (2013), Massó and Neme (2004) among others).2 In this paper, we show an unexpected property for a rich family of rules in the Sprumont model. We consider the largest class identified in the literature, the sequential allotment rules, characterized in Barberà et al. (1997) by the combination of efficiency, strategy-proofness and replacement monotonicity. Notice that each sequential allotment rule is fully implementable in dominant strategies by its direct revelation mechanism—this can be seen for instance following the results in Mizukami and Wakayama (2007).