چکیده
1. مقدمه
2. مرور مطالعات پیشین
3. توسعه نظریه و فرضیه ها
4. مجموعه داده، متغیرها و توسعه مدل
5. نتایج تجربی
6. بحث
7. مفاهیم و محدودیت ها
8. نتیجه گیری
منابع
Abstract
1. Introduction
2. Literature review
3. Theory and hypotheses development
4. Dataset, variables and model development
5. Empirical results
6. Discussion
7. Implications and limitations
8. Conclusion
Funding
Declaration of competing interest
Acknowledgments
References
چکیده
در بازار خرده فروشی نوظهور، خرده فروشان الکترونیکی که در اقتصادهای در حال توسعه فعالیت می کنند باید با استفاده سریع از اینترنت، روش های جدید خرید الکترونیکی و پلت فرم های فروش آنلاین کنار بیایند. با این حال، خرده فروشان الکترونیکی الگوهای تأثیر مشارکت مشتری بر قصد خرید و جذب مشتری را درک نمی کنند. از دیدگاه خرده فروشان الکترونیکی، این مطالعه چگونگی ارتباط رفتارهای تعامل مشتری با قصد خرید و جذب مشتری را بررسی می کند. ما دادههای پخش زنده را در محیط بازار پخش زنده e-tail بالغ بهدست آوردیم و شواهد تجربی را از چارچوب مفهومی از طریق تحلیل مدل رگرسیون حمایت کردیم. نتایج تجزیه و تحلیل نشان میدهد که شاخصهای خاص تعامل مشتری همگی به طور مثبت با قصد خرید مشتری و جذب مشتری مرتبط نیستند و شایان ذکر است که تأثیر رفتار «مانند» بر جذب مشتری از نظر آماری معنادار نیست. انتظار می رود که این امر خرده فروشان الکترونیکی را تشویق کند تا در هنگام فعالیت در بازارهای نوظهور، تمرکز خود را روی استراتژی های دیجیتالی جذب مشتری و افزایش فروش تجدید نظر کنند.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
In the emerging retail market, e-tailers operating in developing economies have to cope with the rapid use of the Internet, new electronic purchasing methods and online selling platforms. However, e-tailers do not understand the effect patterns in which customer engagement on purchase intention and customer acquisition. From e-tailers’ perspective, this study explores how customer engagement behaviors are related to both purchase intention and customer acquisition. We obtained live streaming data in the mature e-tail live streaming market environment and found empirical evidence supporting the conceptual framework through regression model analysis. The analysis results show that the specific indicators of the customer engagement are not all positively related to customer purchase intention and customer acquisition, and it is worth noting that the influence of “like” behavior on customer acquisition is no statistical significance. This is expected to encourage e-tailers to rethink their focus on customer acquisition and sales enhancement digital strategies as they operate in emerging markets.
Introduction
Live streaming e-commerce has become the fastest growing new form of e-commerce in the world in the last three years. According to data from T-mall in China, within 48h of the 618 shopping festival in 2021, the live streaming e-commerce transaction volume of brand stores increased by more than 100% compared to the same period last year, and the number of live broadcast rooms of stores with a transaction of more than 10 million yuan was more than twice that of the same period last year. “Improve business efficiency through Taobao Live” has been recognized by many brands. And many international brands have used Taobao Live to reach Chinese consumers. Live streaming e-commerce has also been widely concerned with consumers in its novel form of commodity display, affordable and convenient. According to the 47th Statistical Report on Internet Development in China (CINIC, 2021), as of December 2020, the scale of online streaming users in China has reached 388 million, and 66.2% of online consumers have bought live streaming merchandise. Live streaming provides customers with added value and additional channels for customer engagement, making it a popular shopping method among consumers. Whether from the perspective of consumers or e-tailers, live streaming will become the mainstream e-commerce mode, as consumers will not change once their shopping patterns are formed.
Conclusion
At a broader level, this paper was motivated by the observation that e-tailers do not understand the effect patterns in which live streaming service on their benefit, i.e., purchase intention and customer acquisition. The notion of engaging is reflected by customer co-creative and interactive experiences (Vargo and Lusch, 2008), so we focus on the customer engagement in the context of live streaming.
Based on the prior research and data availability, we firstly determined the customer engagement behavior indicators (customer visits, likes and comments) in the context of live streaming. Then, we revealed the relationship between these engagement behavior indicators and purchase intention and customer acquisition, respectively, through empirical analysis. Consistent with most studies, customer engagement has a positive effect on purchase intentions, but the degree of impact varies across engagement behaviors, and, for customer acquisition, some engagement behaviors even have a negative impact. Overall, the finding of this paper highlights the important point that different engagement behaviors may have different effects. The retail business may benefit more from studies segmenting these engagement behaviors. Of course, the lack of access to specific data measuring increased sales and increased customers is a major limitation of our study, and in the future, we hope to work with brands to obtain specific data to further validate the findings of this study. While the limitations of our study go beyond this, our findings provide some inspiration for future researchers in the areas of live streaming e-commerce, customer engagement, and relationship marketing.