چکیده
مقدمه
مهارکننده های چرخه TCA
مهارکننده های ETC
نتیجه گیری
منابع
Abstract
Introduction
TCA cycle inhibitors
ETC inhibitors
Conclusion
References
چکیده
سلولهای سرطانی متابولیسم خود را برای حفظ تکثیر پایدار برنامهریزی میکنند، که وابستگی متابولیکی منحصر به فردی را بین سلولهای بدخیم و سالم ایجاد میکند که میتوان از آنها برای درمان استفاده کرد. در لوسمی میلوئید حاد (AML)، مهارکنندههای میتوکندری که آنزیمهای چرخه اسید تری کربوکسیلیک یا مجتمعهای زنجیره انتقال الکترون را مسدود میکنند، اخیراً نوید بالینی نشان دادهاند. مهارکننده ایزوسیترات دهیدروژناز 1 ایووسیدینیب، ایزوسیترات دهیدروژناز 2 بازدارنده اناسیدینیب و ونتوکلاکس تقلیدی BH3 تاییدیه FDA را برای درمان AML در چند سال گذشته دریافت کردند. سایر مهارکننده های میتوکندری از جمله CPI-613، CB-839، مهارکننده های دی هیدروروتات دهیدروژناز، IACS-010759، و mubritinib، اثربخشی پیش بالینی دلگرم کننده ای از خود نشان داده اند و در حال حاضر در کارآزمایی های بالینی در حال ارزیابی هستند. در این بررسی، ما درمانهای مبتنی بر متابولیسم اخیر و توانایی آنها برای هدف قرار دادن متابولیسم سرطان تغییر یافته در AML را خلاصه میکنیم.
توجه! این متن ترجمه ماشینی بوده و توسط مترجمین ای ترجمه، ترجمه نشده است.
Abstract
Cancer cells reprogram their metabolism to maintain sustained proliferation, which creates unique metabolic dependencies between malignant and healthy cells that can be exploited for therapy. In acute myeloid leukemia (AML), mitochondrial inhibitors that block tricarboxylic acid cycle enzymes or electron transport chain complexes have recently shown clinical promise. The isocitrate dehydrogenase 1 inhibitor ivosidenib, the isocitrate dehydrogenase 2 inhibitor enasidenib, and the BH3 mimetic venetoclax received FDA approval for treatment of AML in the last few years. Other mitochondrial inhibitors including CPI-613, CB-839, dihydroorotate dehydrogenase inhibitors, IACS-010759, and mubritinib, have shown encouraging preclinical efficacy and are currently being evaluated in clinical trials. In this review, we summarize recent metabolism-based therapies and their ability to target altered cancer metabolism in AML.
Introduction
Cancer cells rewire their metabolism to meet new nutrient requirements and maintain proliferation. One of the earliest observations of altered metabolism in cancer cells was the Warburg Effect, which describes the tendency of cancer cells to take up more glucose than normal cells and rely on glycolysis as opposed to oxidative phosphorylation (OXPHOS) [1]. Since this discovery in the 1950s, many other energetic pathways altered in cancer have been characterized, including differences in the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). In fact, contrary to Warburg’s observation, some types of cancer rely less on glycolysis and are instead dependent on OXPHOS to produce energy and replicate [2].
Conclusion
The altered metabolism of leukemia cells represents a promising target for therapeutic intervention. Mitochondrial inhibitors block components of the TCA cycle or the ETC, impacting other areas of metabolism such as amino acid and nucleotide synthesis and eventually leading to cell death. In AML, recent work has led to FDA approval for mutant IDH inhibitors ivosidenib and enasidenib and the combination treatment targeting BCL-2 and the ETC, venetoclax and azacitidine. Additional therapies currently in clinical trial development include CPI-613, which inhibits PDH and OGDH as well as lipid metabolism, CB-839, which blocks glutaminase, DHODH inhibitors brequinar, BAY 2402234, and ASLAN003 which link the ETC to pyrimidine synthesis, IACS-010759, a specific inhibitor of ETC complex I, and mubritinib, a ubiquinone inhibitor that impacts ETC complex I. On the horizon, more therapies that target mitochondrial metabolism are under investigation, including ONC201 and ONC212, molecules that target the mitochondrial protease ClpP, and ME-344, which may inhibit ETC complexes I and III as well as microtubule polymerization. While promising, more work is required to determine the exact mechanism and effects of these drugs and move to clinical trials [50].